uk

mfflogo 

Najít

Aktuality

Strouhal Lecture - Mark A Novotny: Adiabatic Quantum Computers in 2017: Huge Advance or All Hype?
Begin: 01.03.2017, 14:00
Location: 1.3.2017 from 14:00 in lecture room F1 of the Faculty of Mathematics and Physics, Ke Karlovu 5, Praha 2

Doc. RNDr. Ilja Turek, DrSc.

Místnost
1015, přízemí, Ke Karlovu 5
Telefon
+420 22191 1397
Fax
+420 22191 1617, +420 22491 1061
E-mail
Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript

 

Výuka:

NFPL147: Fyzika pevných látek II.

 

FPL088: Methods of statistical physics

 

FPL026: Teorie pevných látek


Bibliografie: 

F Maca, J Kudrnovsky, V Drchal, I Turek, O Stelmakhovych, P Beran, A Llobet and X Marti. Defect-induced magnetic structure of CuMnSb. PHYSICAL REVIEW B 94(9), 2016. BibTeX

@article{ ISI:000382718900007,
	author = "Maca, F. and Kudrnovsky, J. and Drchal, V. and Turek, I. and Stelmakhovych, O. and Beran, P. and Llobet, A. and Marti, X.",
	title = "{Defect-induced magnetic structure of CuMnSb}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2016}",
	volume = "{94}",
	number = "{9}",
	month = "{SEP 6}",
	abstract = "{The observed ground state for the CuMnSb alloy is the antiferromagnetic (111) phase as confirmed by neutron diffraction experiments. Ab initio total energy calculations for ideal, defect-free CuMnSb contradict this result and indicate that other magnetic structures can have their total energies lower. It is known that Heusler alloys usually contain various defects depending on the sample preparation. We have therefore investigated magnetic phases of CuMnSb assuming the most common defects which exist in real experimental conditions. The full-potential supercell approach and a Heisenberg model approach using the coherent potential approximation are adopted. The results of the total energy supercell calculations indicate that defects that bring Mn atoms close together promote the antiferromagnetic (111) structure already for a low critical defect concentrations (approximate to 3\%). A detailed study of exchange interactions between Mn moments further supports the above stabilization mechanism. Finally, the stability of the antiferromagnetic (111) order is enhanced by inclusion of electron correlations in narrow Mn bands. The present refinement structure analysis of the neutron scattering experiment supports theoretical conclusions.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Maca, F (Reprint Author), Inst Phys ASCR, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Maca, F.; Kudrnovsky, J.; Drchal, V., Inst Phys ASCR, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Turek, I.; Stelmakhovych, O., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic. Beran, P., Nucl Phys Inst ASCR, CZ-25068 Rez, Czech Republic. Llobet, A., Los Alamos Natl Lab, Neutron Sci \& Technol, Phys, Los Alamos, NM 87544 USA. Marti, X., Inst Phys ASCR, Cukrovarnicka 10, CZ-16253 Prague 6, Czech Republic.}",
	doi = "{10.1103/PhysRevB.94.094407}",
	article-number = "{094407}",
	issn = "{2469-9950}",
	eissn = "{2469-9969}",
	keywords-plus = "{PLANE-WAVE BASIS; EXCHANGE INTERACTIONS; HEUSLER ALLOYS; PHASE; METALS; ENERGY}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Marti, Xavier/E-1103-2014 Turek, Ilja/G-5553-2014 Beran, Premysl/F-8855-2012 Maca, Frantisek/G-4467-2014}",
	orcid-numbers = "{Marti, Xavier/0000-0003-1653-5619 Beran, Premysl/0000-0002-1217-3131 }",
	funding-acknowledgement = "{Czech Science Foundation {[}14-37427G]; National Grid Infrastructure MetaCentrum (CZ) {[}LM2010005]; DOE Office of Basic Energy Sciences; DOE {[}DE-AC52-06NA25396]}",
	funding-text = "{We acknowledge financial support from the Czech Science Foundation (Grant No. 14-37427G) and the National Grid Infrastructure MetaCentrum (CZ) (Project No. LM2010005) for access to computation facilities. This work has benefited from the use of HIPD at the Lujan Center at Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396.}",
	cited-references = "{Alling B, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.064418. Boeuf J, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.024428. CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566. ENDO K, 1970, J PHYS SOC JPN, V29, P643, DOI 10.1143/JPSJ.29.643. FORSTER RH, 1968, J PHYS CHEM SOLIDS, V29, P855, DOI 10.1016/0022-3697(68)90147-9. Graf T, 2011, PROG SOLID STATE CH, V39, P1, DOI 10.1016/j.progsolidstchem.2011.02.001. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. Jeong T, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.184103. Jungwirth T, 2016, NAT NANOTECHNOL, V11, P231, DOI {[}10.1038/nnano.2016.18, 10.1038/NNANO.2016.18]. KORZHAVYI PA, 1995, PHYS REV B, V51, P5773, DOI 10.1103/PhysRevB.51.5773. Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169. Kresse G, 1999, PHYS REV B, V59, P1758, DOI 10.1103/PhysRevB.59.1758. Kudrnovsky J, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.054441. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. LU ZW, 1991, PHYS REV B, V44, P512, DOI 10.1103/PhysRevB.44.512. Maca F, 2012, J MAGN MAGN MATER, V324, P1606, DOI 10.1016/j.jmmm.2011.12.017. Marti X, 2014, NAT MATER, V13, P367, DOI {[}10.1038/nmat3861, 10.1038/NMAT3861]. MORANLOPEZ JL, 1994, J MAGN MAGN MATER, V131, P417, DOI 10.1016/0304-8853(94)90286-0. Ozdogan K, 2008, J APPL PHYS, V103, DOI 10.1063/1.2831224. Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.78.1396. PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048. RODRIGUEZCARVAJAL J, 1993, PHYSICA B, V192, P55, DOI 10.1016/0921-4526(93)90108-I. Sasioglu E, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.064417. Sasioglu E, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.134402. Shick AB, 1999, PHYS REV B, V60, P10763, DOI 10.1103/PhysRevB.60.10763. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Wadley P, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3322. Wills AS, 2000, PHYSICA B, V276, P680, DOI 10.1016/S0921-4526(99)01722-6. Lavrentiev M. Yu., 2010, PHYS REV B, V81.}",
	number-of-cited-references = "{31}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{10}",
	usage-count-since-2013 = "{10}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{DV1YV}",
	unique-id = "{ISI:000382718900007}"
}

J Kudrnovsky, V Drchal and I Turek. Exchange and spin-orbit induced phenomena in diluted (Ga, Mn) As from first principles. PHYSICAL REVIEW B 94(5), 2016. BibTeX

@article{ ISI:000381998600004,
	author = "Kudrnovsky, J. and Drchal, V. and Turek, I.",
	title = "{Exchange and spin-orbit induced phenomena in diluted (Ga, Mn) As from first principles}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2016}",
	volume = "{94}",
	number = "{5}",
	month = "{AUG 26}",
	abstract = "{Physical properties induced by exchange interactions (Curie temperature and spin stiffness) and spin-orbit coupling (anomalous Hall effect, anisotropic magnetoresistance, and Gilbert damping) in the diluted (Ga, Mn) As ferromagnetic semiconductor are studied from first principles. Recently developed Kubo-Bastin transport theory and nonlocal torque operator formulation of the Gilbert damping as formulated in the tight-binding linear muffintin orbital method are used. The first-principles Liechtenstein mapping is employed to construct an effective Heisenberg Hamiltonian and to estimate Curie temperature and spin stiffness in the real-space random-phase approximation. Good agreement of calculated physical quantities with experiments on well-annealed samples containing only a small amount of compensating defects is obtained.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.94.054428}",
	article-number = "{054428}",
	issn = "{2469-9950}",
	eissn = "{2469-9969}",
	keywords-plus = "{FERROMAGNETIC SEMICONDUCTORS; 1ST-PRINCIPLES THEORY; (GA,MN)AS; GA1-XMNXAS; ENERGIES; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	funding-acknowledgement = "{Czech Science Foundation {[}15-13436S]}",
	funding-text = "{The authors acknowledge financial support from the Czech Science Foundation (Grant No. 15-13436S) and they thank Prof. P. Nemec, Dr. V. Novak, and Dr. K. Edmonds for kindly sending their data not shown in their papers, Refs. {[}2,5], and used here for comparison with calculated results.}",
	cited-references = "{Bergqvist L, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.137202. Bouzerar G, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.125207. Bouzerar G, 2005, EUROPHYS LETT, V69, P812, DOI 10.1209/epl/i2004-10473-1. Bouzerar G, 2007, EPL-EUROPHYS LETT, V79, DOI 10.1209/0295-5075/79/57007. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Dietl T, 2014, REV MOD PHYS, V86, DOI 10.1103/RevModPhys.86.187. Ebert H, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.165132. Ebert H, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.045209. Edmonds KW, 2003, J APPL PHYS, V93, P6787, DOI 10.1063/1.1556110. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. Jungwirth T, 2003, APPL PHYS LETT, V83, P320, DOI 10.1063/1.1590433. Jungwirth T, 2006, REV MOD PHYS, V78, P809, DOI 10.1103/RevModPhys.78.809. Kaspar Z, 2015, PHYSCS PROC, V75, P634, DOI 10.1016/j.phpro.2015.12.081. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. Kudrnovsky J, 2007, APPL PHYS LETT, V91, DOI 10.1063/1.2778468. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. Kudrnovsky J, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.214436. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Liu Y, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.014412. Mankovsky S, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.014430. Masek J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.165212. Masek J, 2004, ACTA PHYS POL A, V105, P637. Masek J, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.227202. Nemec P, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2426. Novak V., COMMUNICATION. Pereira LMC, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3592568. Sakuma A, 2012, J PHYS SOC JPN, V81, DOI 10.1143/JPSJ.81.084701. Sato K, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.201202. Sato K, 2010, REV MOD PHYS, V82, P1633, DOI 10.1103/RevModPhys.82.1633. Schoen MAW, 2016, NAT PHYS, V12, P839, DOI 10.1038/nphys3770. Starikov AA, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.236601. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.214407. Turek I, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.064405. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Werpachowska A, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.085204. Zimmermann B, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.220403.}",
	number-of-cited-references = "{39}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{10}",
	usage-count-since-2013 = "{10}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{DU1VQ}",
	unique-id = "{ISI:000381998600004}"
}

K Carva, J Kudrnovsky, F Maca, V Drchal, I Turek, P Balaz, V Tkac, V Holy, V Sechovsky and J Honolka. Electronic and transport properties of the Mn-doped topological insulator Bi2Te3: A first-principles study. PHYSICAL REVIEW B 93(21), 2016. BibTeX

@article{ ISI:000377299100003,
	author = "Carva, K. and Kudrnovsky, J. and Maca, F. and Drchal, V. and Turek, I. and Balaz, P. and Tkac, V. and Holy, V. and Sechovsky, V. and Honolka, J.",
	title = "{Electronic and transport properties of the Mn-doped topological insulator Bi2Te3: A first-principles study}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2016}",
	volume = "{93}",
	number = "{21}",
	month = "{JUN 8}",
	abstract = "{We present a first-principles study of the electronic, magnetic, and transport properties of the topological insulator Bi2Te3 doped with Mn atoms in substitutional (Mn-Bi) and interstitial van der Waals gap positions (Mn-i), which act as acceptors and donors, respectively. The effect of native Bi-Te- and Te-Bi-antisite defects and their influence on calculated electronic transport properties is also investigated. We have studied four models representing typical cases, namely, (i) Bi2Te3 with and without native defects, (ii) Mn-Bi defects with and without native defects, (iii) the same, but for Mn-i defects, and (iv) the combined presence of Mn-Bi and Mn-i. It has been found that lattice relaxations around Mn-Bi defects play an important role for both magnetic and transport properties. The resistivity is strongly influenced by the amount of carriers, their type, and by the relative positions of the Mn-impurity energy levels and the Fermi energy. Our results suggest strategies to tune bulk resistivities and also clarify the location of Mn atoms in samples. Calculations indicate that at least two of the considered defects have to be present simultaneously in order to explain the experimental observations, and the role of interstitials may be more important than expected.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Carva, K (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic. Carva, K.; Turek, I.; Balaz, P.; Tkac, V.; Holy, V.; Sechovsky, V., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic. Kudrnovsky, J.; Maca, F.; Drchal, V.; Honolka, J., Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic.}",
	doi = "{10.1103/PhysRevB.93.214409}",
	article-number = "{214409}",
	issn = "{2469-9950}",
	eissn = "{2469-9969}",
	keywords-plus = "{MAGNETIC SEMICONDUCTORS; SYSTEMS; ALLOYS; SURFACE; SB2TE3}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Carva, Karel/A-3703-2008 Balaz, Pavel/M-9510-2015 Maca, Frantisek/G-4467-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 Balaz, Pavel/0000-0003-0016-9271 }",
	funding-acknowledgement = "{Czech Science Foundation {[}14-30062S]; Purkyne fellowship program of the Czech Academy of Sciences; National Grid Infrastructure MetaCentrum {[}LM2010005]}",
	funding-text = "{This work was supported by the Czech Science Foundation Grant No. 14-30062S. J.H. acknowledges the Purkyne fellowship program of the Czech Academy of Sciences. F.M. and J.K. acknowledge the National Grid Infrastructure MetaCentrum (Project LM2010005) for access to computation facilities.}",
	cited-references = "{Aguilera I, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.045206. Brahlek M, 2015, SOLID STATE COMMUN, V215, P54, DOI 10.1016/j.ssc.2014.10.021. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Carva K, 2007, J MAGN MAGN MATER, V310, P2123, DOI 10.1016/j.jmmm.2006.10.933. CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566. Choi J, 2005, J APPL PHYS, V97, DOI 10.1063/1.1854451. Dietl T, 2014, REV MOD PHYS, V86, DOI 10.1103/RevModPhys.86.187. Fu L, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.106803. HARMAN TC, 1957, J PHYS CHEM SOLIDS, V2, P181, DOI 10.1016/0022-3697(57)90081-1. Hasan MZ, 2010, REV MOD PHYS, V82, P3045, DOI 10.1103/RevModPhys.82.3045. Henk J, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.076801. Hoefer K, 2014, P NATL ACAD SCI USA, V111, P14979, DOI 10.1073/pnas.1410591111. Hor YS, 2011, J PHYS CHEM SOLIDS, V72, P572, DOI 10.1016/j.jpcs.2010.10.027. Hor YS, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.195203. Hsieh D, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.146401. KORZHAVYI PA, 1995, PHYS REV B, V51, P5773, DOI 10.1103/PhysRevB.51.5773. Kresse G, 1999, PHYS REV B, V59, P1758, DOI 10.1103/PhysRevB.59.1758. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. Kudrnovsky J, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.064405. Larson P., 2002, Physical Review B (Condensed Matter and Materials Physics), V65, p085108/1, DOI 10.1103/PhysRevB.65.085108. Lee JS, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.174425. Li YC, 2014, J CHEM PHYS, V140, DOI 10.1063/1.4869146. Mishra SK, 1997, J PHYS-CONDENS MAT, V9, P461, DOI 10.1088/0953-8984/9/2/014. Noh HJ, 2008, EPL-EUROPHYS LETT, V81, DOI 10.1209/0295-5075/81/57006. Oh MW, 2014, J APPL PHYS, V115, DOI 10.1063/1.4870818. Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865. PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048. Persson C, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.035212. Rakyta P, 2015, NEW J PHYS, V17, DOI 10.1088/1367-2630/17/12/123011. Ruzicka J, 2015, NEW J PHYS, V17, DOI 10.1088/1367-2630/17/1/013028. Sato K, 2010, REV MOD PHYS, V82, P1633, DOI 10.1103/RevModPhys.82.1633. Scanlon DO, 2012, ADV MATER, V24, P2154, DOI 10.1002/adma.201200187. Skriver H., 1984, LMTO METHOD MUFFIN T. SOVEN P, 1967, PHYS REV, V156, P809, DOI 10.1103/PhysRev.156.809. Tarasenko R, 2016, PHYSICA B, V481, P262, DOI 10.1016/j.physb.2015.11.022. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2010, J PHYS CONF SER, V200, DOI 10.1088/1742-6596/200/5/052029. Turek I, 2008, PHILOS MAG, V88, P2787, DOI 10.1080/14786430802232553. Turek I., 1997, ELECT STRUCTURE DISO. Vergniory MG, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.165202. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Watson MD, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/10/103016. Wei ZT, 2015, J SUPERCOND NOV MAGN, V28, P2083, DOI 10.1007/s10948-015-2965-1. Zhang HJ, 2009, NAT PHYS, V5, P438, DOI 10.1038/NPHYS1270. Zhang JM, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.235131. Zhang W, 2010, NEW J PHYS, V12, DOI 10.1088/1367-2630/12/6/065013.}",
	number-of-cited-references = "{47}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{30}",
	usage-count-since-2013 = "{31}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{DN7ZQ}",
	unique-id = "{ISI:000377299100003}"
}

I Turek. Static transport properties of random alloys: Vertex corrections in conserving approximations. PHYSICAL REVIEW B 93(24), 2016. BibTeX

@article{ ISI:000377301700001,
	author = "Turek, I.",
	title = "{Static transport properties of random alloys: Vertex corrections in conserving approximations}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2016}",
	volume = "{93}",
	number = "{24}",
	month = "{JUN 7}",
	abstract = "{The theoretical formulation and numerical evaluation of the vertex corrections in multiorbital techniques of theories of electronic properties of random alloys are analyzed. It is shown that current approaches to static transport properties within the so-called conserving approximations lead to the inversion of a singular matrix as a direct consequence of the Ward identity relating the vertex corrections to one-particle self-energies. We propose a simple removal of the singularity for quantities (operators) with vanishing average values for electron states at the Fermi energy, such as the velocity or the spin torque; the proposed scheme is worked out in detail in the self-consistent Born approximation and the coherent-potential approximation. Applications involve calculations of the residual resistivity for various random alloys, including spin-polarized and relativistic systems, treated on an ab initio level, with particular attention paid to the role of different symmetries (inversion of space and time).}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.93.245114}",
	article-number = "{245114}",
	issn = "{2469-9950}",
	eissn = "{2469-9969}",
	keywords-plus = "{COHERENT-POTENTIAL APPROXIMATION; ELECTRONIC TRANSPORT; METALS; CONDUCTIVITY; RESISTIVITY}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	funding-acknowledgement = "{Czech Science Foundation {[}15-13436S]}",
	funding-text = "{The author acknowledges financial support from the Czech Science Foundation (Grant No. 15-13436S).}",
	cited-references = "{BASTIN A, 1971, J PHYS CHEM SOLIDS, V32, P1811, DOI 10.1016/S0022-3697(71)80147-6. BUTLER WH, 1985, PHYS REV B, V31, P3260, DOI 10.1103/PhysRevB.31.3260. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Ebert H, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.165132. EDWARDS SF, 1958, PHILOS MAG, V3, P1020, DOI 10.1080/14786435808243244. ELLIOTT RJ, 1974, REV MOD PHYS, V46, P465, DOI 10.1103/RevModPhys.46.465. Freimuth F, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.174423. Gonis A., 2000, THEORETICAL MAT SCI. GREENWOOD DA, 1958, P PHYS SOC LOND, V71, P585, DOI 10.1088/0370-1328/71/4/306. Heine V., 1960, GROUP THEORY QUANTUM. Janis V, 2009, J PHYS-CONDENS MAT, V21, DOI 10.1088/0953-8984/21/48/485501. Kodderitzsch D, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.184415. KOSTER GF, 1957, SOLID STATE PHYS, V5, P173, DOI 10.1016/S0081-1947(08)60103-4. Kota Y, 2009, J APPL PHYS, V105, DOI 10.1063/1.3073955. KUBO R, 1957, J PHYS SOC JPN, V12, P570, DOI 10.1143/JPSJ.12.570. Kudrnovsky J, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.014435. LOWDIN PO, 1962, J MATH PHYS, V3, P969. Lowitzer S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.266604. Lowitzer S, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.056601. Mahan G. D., 2000, MANY PARTICLE PHYS. Mankovsky S, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.014430. Mertig I, 1999, REP PROG PHYS, V62, P237, DOI 10.1088/0034-4885/62/2/004. MOTT NF, 1964, ADV PHYS, V13, P325, DOI 10.1080/00018736400101041. Ramazashvili R, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.220503. Sakuma A, 2015, J APPL PHYS, V117, DOI 10.1063/1.4905429. SOVEN P, 1967, PHYS REV, V156, P809, DOI 10.1103/PhysRev.156.809. SWIHART JC, 1986, PHYS REV LETT, V57, P1181, DOI 10.1103/PhysRevLett.57.1181. TAKAHASHI Y, 1957, NUOVO CIMENTO, V6, P371, DOI 10.1007/BF02832514. Toschi A, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.045118. TOYODA T, 1989, PHYS REV A, V39, P2659, DOI 10.1103/PhysRevA.39.2659. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017. Turek I, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.214407. Turek I, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.064405. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.014405. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614. Velicky B., 2008, PHYS REV B. VOLLHARDT D, 1980, PHYS REV B, V22, P4666, DOI 10.1103/PhysRevB.22.4666. Vyborny K, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.045427. WARD JC, 1950, PHYS REV, V78, P182, DOI 10.1103/PhysRev.78.182.}",
	number-of-cited-references = "{40}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{DN8AQ}",
	unique-id = "{ISI:000377301700001}"
}

L Havela, M Paukov, I Tkach, Z Matej, D Kriegner, S Maskova, B Vondrackova, M Pracharova, I Turek, M Divis, M Cieslar, D Drozdenko, N -T H Kim-Ngan and A V Andreev. UH3-based ferromagnets: New look at an old material. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 400:130-136, 2016. 20th International Conference on Magnetism, Span Soc Magnetism, Barcelona, SPAIN, JUL 05-10, 2015. BibTeX

@article{ ISI:000366157600029,
	author = "Havela, L. and Paukov, M. and Tkach, I. and Matej, Z. and Kriegner, D. and Maskova, S. and Vondrackova, B. and Pracharova, M. and Turek, I. and Divis, M. and Cieslar, M. and Drozdenko, D. and Kim-Ngan, N. -T. H. and Andreev, A. V.",
	title = "{UH3-based ferromagnets: New look at an old material}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2016}",
	volume = "{400}",
	pages = "{130-136}",
	month = "{FEB 15}",
	note = "{20th International Conference on Magnetism, Span Soc Magnetism, Barcelona, SPAIN, JUL 05-10, 2015}",
	organization = "{Barcelo Congress; Palau Congress Catalunya; Spanish Royal Soc Phys; Int Union Pure Appl Phys}",
	abstract = "{UH3 is the first discovered material with ferromagnetism based purely on the 5f electronic states, known for more than half century. Although the U metal is Pauli paramagnet, the reduced 5f-5f overlap in compounds allows for moment formation and ordering, typically if the U-U spacing exceeds the Hill limit, i.e. about 340 pm. The stable form of UH3, known as beta-UH3, has rather high T-C approximate to 170 K. Such high value is rather unusual, considering d(U-U)=331 pm. Properties of metastable alpha-UH3 with d(U-U)=360 pm could be never well established. Using the fact that alpha-UH3 is in fact bcc U with interstitials filled by H, we attempted to synthesize alpha-UH3 starting from the gamma-U alloys, with the bcc structure retained to room temperature by doping combined with ultrafast cooling. While up to 15\% Zr a contamination by beta-UH3 was obtained, 20\% Zr yielded single phase alpha-UH3. The Tc value remains high and very similar to beta-UH3. One can see an increase up to 187 K for 15\% Zr, followed by a weak decrease. Magnetic moments remain close to 1 mu(B)/U atom. An insight is provided by ab-initio calculations, revealing a charge transfer towards H-Is states, depopulating the U-6d and 7s states, leaving almost pure 5f character around the Fermi level. The 5f magnetism exhibits a high coercivity (mu H-0(C) up to 5.5 T) and large spontaneous volume magnetostriction of 3.2{*}10(-3). Even higher increase of T-c, reaching up to 203 K, can be achieved in analogous Mo stabilized hydrides, which yield an amorphous structure. The compounds represent, together with known hydrides of U6Fe and U6CO3 a new group of robust 5f ferromagnets with small d(U-U) but high T. Although common hydrides are fine powders, some of the new hydrides described as (UH3)((1-x))T-x (T=Zr or Mo) remain monolithic, which allows to study transport and thermodynamic properties. (C) 2015 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Havela, L (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Ke Karlovu 5, CR-12116 Prague 2, Czech Republic. Havela, L.; Paukov, M.; Tkach, I.; Matej, Z.; Kriegner, D.; Maskova, S.; Vondrackova, B.; Pracharova, M.; Turek, I.; Divis, M.; Cieslar, M.; Drozdenko, D.; Kim-Ngan, N. -T. H.; Andreev, A. V., Charles Univ Prague, Fac Math \& Phys, CR-12116 Prague 2, Czech Republic.}",
	doi = "{10.1016/j.jmmm.2015.07.053}",
	issn = "{0304-8853}",
	eissn = "{1873-4766}",
	keywords-plus = "{ELECTRONIC-STRUCTURE; NEUTRON-DIFFRACTION; MAGNETIC-PROPERTIES; METALS; SPECTROSCOPY; BETA-UH3; ALLOYS; UCU2P2}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Andreev, Alexander/B-6057-2011 Matej, Zdenek/I-6617-2015 Kriegner, Dominik/C-6225-2013 Cieslar, Miroslav/P-5981-2016 Drozdenko, Daria/P-8805-2016}",
	orcid-numbers = "{Matej, Zdenek/0000-0002-2585-573X Kriegner, Dominik/0000-0001-6961-6581 Cieslar, Miroslav/0000-0002-2801-3810 Drozdenko, Daria/0000-0001-5180-4701}",
	funding-acknowledgement = "{Czech Science Foundation {[}15-01100S]; Grant Agency of the Charles University {[}1332314]; program of Czech Research Infrastructures {[}LM2011025]; Czech-Polish bilateral cooperation {[}MOBILITY 7AMB14PL036]}",
	funding-text = "{This work was supported by the Czech Science Foundation under the Grant 15-01100S. M. Paukov was supported by the Grant Agency of the Charles University under the project no. 1332314. Experiments were partly performed at MLTL (http://mltl.eu), which is supported within the program of Czech Research Infrastructures (Project no. LM2011025). Participation of N.-T.H.K-N was supported by the program MOBILITY 7AMB14PL036 (Czech-Polish bilateral cooperation). The discussion with D. Kaczorowski is gratefully acknowledged.}",
	cited-references = "{Andreev AV, 1998, J ALLOY COMPD, V267, P32, DOI 10.1016/S0925-8388(97)00531-8. ANDREEV AV, 1986, PHYS STATUS SOLIDI A, V98, pK47, DOI 10.1002/pssa.2210980148. BARTSCHER W, 1985, SOLID STATE COMMUN, V53, P423, DOI 10.1016/0038-1098(85)91000-2. Black L, 2001, J ALLOY COMPD, V315, P36, DOI 10.1016/S0925-8388(00)01307-4. DRULIS H, 1995, PHYS REV B, V52, P9500, DOI 10.1103/PhysRevB.52.9500. Gouder T, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.235108. Gouder T, 2007, MATER RES SOC SYMP P, V986, P17. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. Havela L, 2006, J ALLOY COMPD, V408, P1320, DOI 10.1016/j.jallcom.2005.04.125. Havela L, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.085101. HAVELA L, 1992, PHYSICA B, V177, P159, DOI 10.1016/0921-4526(92)90087-9. Havela L., 2014, MRS P, V1683, P1, DOI {[}http://dx.doi.org/10.1557/opl.2014.431, DOI 10.1557/0PL.2014.431]. Jeffries JR, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.214104. JOHANSSON B, 1982, J MAGN MAGN MATER, V29, P217, DOI 10.1016/0304-8853(82)90244-X. KACZOROWSKI D, 1990, J PHYS-CONDENS MAT, V2, P4185, DOI 10.1088/0953-8984/2/18/015. Khmelevskyi S, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.132401. Khmelevskyi S, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.037201. LAWSON AC, 1991, J APPL PHYS, V69, P5112, DOI 10.1063/1.348140. RUNDLE RE, 1951, J AM CHEM SOC, V73, P4172, DOI 10.1021/ja01153a035. SCHOENES J, 1989, J MAGN MAGN MATER, V81, P112, DOI 10.1016/0304-8853(89)90237-0. Shick AB, 1996, PHYS REV B, V54, P1610, DOI 10.1103/PhysRevB.54.1610. Sternberk J., 1971, J PHYS PARIS S, V32. SWITENDICK AC, 1982, J LESS-COMMON MET, V88, P257, DOI 10.1016/0022-5088(82)90229-6. Taylor CD, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.224408. Taylor CD, 2010, ACTA MATER, V58, P1045, DOI 10.1016/j.actamat.2009.10.021. Tkach I, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.115116. Tkach I, 2014, PHYSICA C, V498, P14, DOI 10.1016/j.physc.2013.12.003. Tkach I, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.060407. Tkach I., 2014, ACTA PHYS POL, V124, P292. TROC R, 1995, J ALLOY COMPD, V219, P1, DOI 10.1016/0925-8388(94)05062-7. Troc R., 1973, SOLID STATE COMMUN, V13, P14. Turek I, 2007, J ALLOY COMPD, V431, P37, DOI 10.1016/j.jallcom.2006.05.057. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.174430. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{35}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{10}",
	usage-count-since-2013 = "{26}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{CY1HP}",
	unique-id = "{ISI:000366157600029}"
}

J Kudrnovsky, V Drchal and I Turek. Effect of partial order on galvanomagnetic transport properties of ferromagnetic PdFe and PdCo alloys. PHYSICAL REVIEW B 92(22), 2015. BibTeX

@article{ ISI:000366500200004,
	author = "Kudrnovsky, J. and Drchal, V. and Turek, I.",
	title = "{Effect of partial order on galvanomagnetic transport properties of ferromagnetic PdFe and PdCo alloys}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2015}",
	volume = "{92}",
	number = "{22}",
	month = "{DEC 15}",
	abstract = "{The effect of ordering on the galvanomagnetic properties such as the anomalous Hall conductivity (AHC) and the anisotropic magnetoresistance (AMR) ratio is studied using recently developed formalism which takes into account both the Fermi surface and Fermi sea contributions to the conductivity tensor. As a case study we have considered Pd-rich L1(2)-Pd70Fe30 alloy and disordered fcc-Pd1-xCox alloy with a weak partial L1(0) and L1(2) orderings which can exist around stoichiometric compositions. We have found a nonnegligible effect of the Fermi sea term for the Pd-rich PdFe alloys while its effect for completely disordered fcc-PdCo alloy is small. The most important effect of inclusion of a weak partial order for fcc-PdCo alloys in theoretical calculations is improvement of the agreement between theory and experiment for the resistivity but first of all for the AMR ratio. An enhancement of the AMR ratio due to the layerlike L1(0) ordering brings calculated and experimental values into a good agreement missing in the disordered alloy. The effect of the isotropic L1(2) ordering on the AMR values is weak. Finally, the effect of the ordering on the resistivity and the AHC is much weaker, although observable.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, Slovance 2, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.92.224421}",
	article-number = "{224421}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{MAGNETORESISTANCE; PALLADIUM; COBALT}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	funding-acknowledgement = "{Czech Science Foundation {[}15-13436S]}",
	funding-text = "{The authors acknowledge financial support by the Czech Science Foundation (Grant No. 15-13436S).}",
	cited-references = "{Banhart J, 2002, EUROPHYS LETT, V58, P264, DOI 10.1209/epl/i2002-00632-4. BOZORTH RM, 1961, PHYS REV, V122, P1157, DOI 10.1103/PhysRev.122.1157. CABLE JW, 1965, PHYS REV, V138, pA755, DOI 10.1103/PhysRev.138.A755. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Chen M, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3556616. Czaja P, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.014411. Ebert H, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.165132. Glasbrenner JK, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.174408. HSU Y, 1979, J APPL PHYS, V50, P1907, DOI 10.1063/1.327160. Ishida K., 1991, J PHASE EQUILIB, V12, P83, DOI 10.1007/BF02663680. JEN SU, 1992, PHYS REV B, V45, P9819, DOI 10.1103/PhysRevB.45.9819. JEN SU, 1994, J APPL PHYS, V76, P5782, DOI 10.1063/1.358391. Kudrnovsky J, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.224422. Kudrnovsky J, 2013, J SUPERCOND NOV MAGN, V26, P1749, DOI 10.1007/s10948-012-2080-5. Kudrnovsky J, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.214436. Liu Y, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.220405. Lowitzer S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.266604. MATSUO Y, 1972, J PHYS SOC JPN, V32, P972, DOI 10.1143/JPSJ.32.972. Ohtake M, 2012, J APPL PHYS, V111, DOI 10.1063/1.3672856. Rossiter R. L., 1987, ELECT RESISTIVITY ME. SCHWARZ K, 1984, J PHYS F MET PHYS, V14, P2659, DOI 10.1088/0305-4608/14/11/021. Seemann KM, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.076402. Turek I, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.064405. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.014405. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Wimmer S, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.161101.}",
	number-of-cited-references = "{27}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{CY6EG}",
	unique-id = "{ISI:000366500200004}"
}

I Turek, J Kudrnovsky and V Drchal. Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys. PHYSICAL REVIEW B 92(21), 2015. BibTeX

@article{ ISI:000365778600002,
	author = "Turek, I. and Kudrnovsky, J. and Drchal, V.",
	title = "{Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2015}",
	volume = "{92}",
	number = "{21}",
	month = "{DEC 3}",
	abstract = "{We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known torque-correlation formula and which can be formulated within the atomic-sphere approximation. The formalism is sketched in a simple tight-binding model and worked out in detail in the relativistic tight-binding linear muffin-tin orbital method and the coherent potential approximation (CPA). The resulting nonlocal torques are represented by nonrandom, non-site-diagonal, and spin-independent matrices, which simplifies the configuration averaging. The CPA-vertex corrections play a crucial role for the internal consistency of the theory and for its exact equivalence to other first-principles approaches based on the random local torques. This equivalence is also illustrated by the calculated Gilbert damping parameters for binary NiFe and FeCo random alloys, for pure iron with a model atomic-level disorder, and for stoichiometric FePt alloys with a varying degree of L10 atomic long-range order.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic.}",
	doi = "{10.1103/PhysRevB.92.214407}",
	article-number = "{214407}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{COHERENT-POTENTIAL APPROXIMATION; TIN-ORBITAL METHOD; ELECTRONIC TRANSPORT; MAGNETIC METALS; DENSITY; FILMS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	funding-acknowledgement = "{Czech Science Foundation {[}15-13436S]}",
	funding-text = "{The authors acknowledge financial support from the Czech Science Foundation (Grant No. 15-13436S).}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. ANDERSEN OK, 1986, PHYS REV B, V34, P5253, DOI 10.1103/PhysRevB.34.5253. Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. Banhart J, 1997, PHYS REV B, V56, P10165, DOI 10.1103/PhysRevB.56.10165. Barsukov I, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.180405. Brataas A, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.054416. Brataas A, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.037207. BUTLER WH, 1985, PHYS REV B, V31, P3260, DOI 10.1103/PhysRevB.31.3260. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Carva K, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.104432. Dias MD, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.075405. Ebert H, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.165132. Ebert H, 2011, REP PROG PHYS, V74, DOI 10.1088/0034-4885/74/9/096501. Ebert H, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.066603. Fahnle M, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.184427. Freimuth F, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.174423. Garate I, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.064404. Garate I, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.064403. Gilbert TL, 2004, IEEE T MAGN, V40, P3443, DOI 10.1109/TMAG.2004.836740. Gilmore K, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.027204. Gilmore K, 2008, J APPL PHYS, V103, DOI 10.1063/1.2832348. Gonis A., 1992, GREEN FUNCTIONS ORDE, P36. Heinrich B, 1994, ULTRATHIN MAGNETIC S, P195. Iihama S, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.174416. KAMBERSKY V, 1976, CZECH J PHYS, V26, P1366, DOI 10.1007/BF01587621. Kambersky V, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.134416. KORENMAN V, 1972, PHYS REV B, V6, P2769, DOI 10.1103/PhysRevB.6.2769. Kudrnovsky J, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.224422. Liu Y, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.014412. Lounis S, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.104420. Manchon A, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.094422. Mankovsky S, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.014430. Mizukami S, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3549704. Oogane M, 2006, JPN J APPL PHYS 1, V45, P3889, DOI 10.1143/JJAP.45.3889. Pitaevskii L. P., 1980, STAT PHYS 2. Rose M.E., 1961, RELATIVISTIC ELECT T. Sakuma A, 2015, J PHYS D APPL PHYS, V48, DOI 10.1088/0022-3727/48/16/164011. Sakuma A, 2015, J APPL PHYS, V117, DOI 10.1063/1.4905429. Sakuma A, 2012, J PHYS SOC JPN, V81, DOI 10.1143/JPSJ.81.084701. SCHREIBER F, 1995, SOLID STATE COMMUN, V93, P965, DOI 10.1016/0038-1098(94)00906-6. Shick AB, 1996, PHYS REV B, V54, P1610, DOI 10.1103/PhysRevB.54.1610. Simanek E, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.144418. Sinova J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.085209. SOLOVYEV IV, 1991, PHYS REV B, V43, P14414, DOI 10.1103/PhysRevB.43.14414. Starikov AA, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.236601. Steiauf D, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.064450. Strange P., 1998, RELATIVISTIC QUANTUM. Tserkovnyak Y, 2004, APPL PHYS LETT, V84, P5234, DOI 10.1063/1.1762979. TUREK I, 1994, PHYS REV B, V49, P3352, DOI 10.1103/PhysRevB.49.3352. Turek I, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.064405. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.174430. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.014405. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WEISS RJ, 1959, J PHYS CHEM SOLIDS, V9, P302, DOI 10.1016/0022-3697(59)90107-6. Zabloudil J., 2005, ELECT SCATTERING SOL.}",
	number-of-cited-references = "{59}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{6}",
	usage-count-since-2013 = "{14}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{CX5YO}",
	unique-id = "{ISI:000365778600002}"
}

I Tkach, M Paukov, D Drozdenko, M Cieslar, B Vondrackova, Z Matej, D Kriegner, A V Andreev, N -T H Kim-Ngan, I Turek, M Divis and L Havela. Electronic properties of alpha-UH3 stabilized by Zr. PHYSICAL REVIEW B 91(11), 2015. BibTeX

@article{ ISI:000351281000002,
	author = "Tkach, I. and Paukov, M. and Drozdenko, D. and Cieslar, M. and Vondrackova, B. and Matej, Z. and Kriegner, D. and Andreev, A. V. and Kim-Ngan, N. -T. H. and Turek, I. and Divis, M. and Havela, L.",
	title = "{Electronic properties of alpha-UH3 stabilized by Zr}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2015}",
	volume = "{91}",
	number = "{11}",
	month = "{MAR 6}",
	abstract = "{Pure hydride of the alpha-UH3 type without any beta-UH3 admixture was prepared by high-pressure hydrogenation of bcc U stabilized by Zr. Such material, characterized by a general formula (UH3)(1-x)Zr-x, is stable in air at ambient and elevated temperatures. Hrelease is observed in the range of 400-600 degrees C similar to beta-UH3. Its stability allowed us to measure the magnetic properties, specific heat, and electrical resistivity in a wide temperature range. Despite the rather different crystal structure and inter-U spacing, the electronic properties are almost identical to beta-UH3. Its ferromagnetic ground state with Curie temperature T-C approximate to 180K (weakly and nonmonotonously dependent on Zr concentration) and U moments of 1.0 mu B indicate why mixtures of alpha- and beta-UH3 exhibited only one transition. Magnetic ordering leads to a large spontaneous magnetostriction omega(s) = 3.2 x 10(-3), which can be explained by the increase of the spin moment between the paramagnetic (disordered local moment) and the ferromagnetic states. The role of orbital moments in magnetism is indicated by fully relativistic electronic structure calculations.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Tkach, I (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Ke Karlovu 5, CR-12116 Prague 2, Czech Republic. Tkach, I.; Paukov, M.; Drozdenko, D.; Cieslar, M.; Vondrackova, B.; Matej, Z.; Kriegner, D.; Turek, I.; Divis, M.; Havela, L., Charles Univ Prague, Fac Math \& Phys, CR-12116 Prague 2, Czech Republic. Andreev, A. V., Acad Sci Czech Republic, Inst Phys, Prague 18221, Czech Republic. Kim-Ngan, N. -T. H., Pedag Univ Cracow, Inst Phys, Krakow, Poland.}",
	doi = "{10.1103/PhysRevB.91.115116}",
	article-number = "{115116}",
	issn = "{2469-9950}",
	eissn = "{2469-9969}",
	keywords-plus = "{MAGNETIC-PROPERTIES; URANIUM HYDRIDE; BAND-STRUCTURE; SUSCEPTIBILITY; BETA-UH3; METALS; ALLOYS; ENERGY; HEAT; SPIN}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Andreev, Alexander/B-6057-2011 Turek, Ilja/G-5553-2014 Kriegner, Dominik/C-6225-2013 Matej, Zdenek/I-6617-2015 Cieslar, Miroslav/P-5981-2016 Drozdenko, Daria/P-8805-2016}",
	orcid-numbers = "{Kriegner, Dominik/0000-0001-6961-6581 Matej, Zdenek/0000-0002-2585-573X Cieslar, Miroslav/0000-0002-2801-3810 Drozdenko, Daria/0000-0001-5180-4701}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/12/0285, P204/10/0330, 15-01100S]; Grant Agency of the Charles University {[}1332314]; program of Czech Research Infrastructures {[}LM2011025]; Czech-Polish bilateral cooperation {[}MOBILITY 7AMB14PL036]}",
	funding-text = "{This work was supported by the Czech Science Foundation under the Grant Nos. P204/12/0285, P204/10/0330 and 15-01100S. M. Paukov was supported by the Grant Agency of the Charles University under the project No. 1332314. Experiments were partly performed at MLTL (http://mltl.eu/), which is supported within the program of Czech Research Infrastructures (project No. LM2011025). Participation N.-T.H.K-N. was supported by the program MOBILITY 7AMB14PL036 (Czech-Polish bilateral cooperation).}",
	cited-references = "{Ablitzer C, 2013, J NUCL MATER, V432, P135, DOI 10.1016/j.jnucmat.2012.08.008. ALDRED AT, 1979, J MAGN MAGN MATER, V10, P42, DOI 10.1016/0304-8853(79)90314-7. Andreev AV, 1998, J ALLOY COMPD, V267, P32, DOI 10.1016/S0925-8388(97)00531-8. ANDREEV AV, 1986, PHYS STATUS SOLIDI A, V98, pK47, DOI 10.1002/pssa.2210980148. ASM International, 1980, BINARY ALLOY PHASE D. BROOKS MSS, 1983, PHYS REV LETT, V51, P1708, DOI 10.1103/PhysRevLett.51.1708. DONIACH S, 1977, PHYSICA B \& C, V91, P231, DOI 10.1016/0378-4363(77)90190-5. DRULIS H, 1995, PHYS REV B, V52, P9500, DOI 10.1103/PhysRevB.52.9500. EGAMI T, 1973, PHYS STATUS SOLIDI A, V19, P747, DOI 10.1002/pssa.2210190242. EGAMI T, 1973, PHYS STATUS SOLIDI A, V20, P157, DOI 10.1002/pssa.2210200114. FERNANDES JC, 1985, SOLID STATE COMMUN, V55, P1011, DOI 10.1016/0038-1098(85)90578-2. Glagolenko IY, 2002, APPL PHYS A-MATER, V74, pS1397, DOI 10.1007/s003390201808. Gordon P., 1949, THESIS MIT CAMBRIDGE. Gouder T, 2007, MATER RES SOC SYMP P, V986, P17. Grenthe I., 2006, CHEM ACTINIDE TRANSA, V1, P253. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. Hajipanayis G. C., 1999, J MAGN MAGN MATER, V200, P373. Halevy I, 2004, J ALLOY COMPD, V370, P59, DOI 10.1016/j.jallcom.2003.09.124. HAVELA L, 1992, PHYSICA B, V177, P159, DOI 10.1016/0921-4526(92)90087-9. Havela L., 2014, MATER RES SOC S P, V1683. Havela L, 2009, J APPL PHYS, V105, DOI 10.1063/1.3062946. Henriques MS, 2013, J PHYS-CONDENS MAT, V25, DOI 10.1088/0953-8984/25/6/066010. Hill H.H., 1970, PLUTONIUM OTHER ACTI, P1. HJELM A, 1994, PHYS REV B, V50, P4332, DOI 10.1103/PhysRevB.50.4332. Javorsky P, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.054412. Jeffries JR, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.214104. Khmelevskyi S, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.132401. Khmelevskyi S, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.037201. KOELLING DD, 1985, PHYS REV B, V31, P4966, DOI 10.1103/PhysRevB.31.4966. Koepernik K, 1999, PHYS REV B, V59, P1743, DOI 10.1103/PhysRevB.59.1743. LAWSON AC, 1991, J APPL PHYS, V69, P5112, DOI 10.1063/1.348140. LEBECH B, 1991, J APPL PHYS, V69, P5891, DOI 10.1063/1.347864. OESTERREICHER H, 1978, PHYS REV B, V18, P480, DOI 10.1103/PhysRevB.18.480. PERDEW JP, 1992, PHYS REV B, V45, P13244, DOI 10.1103/PhysRevB.45.13244. ROSS JW, 1968, PHYS REV, V165, P617, DOI 10.1103/PhysRev.165.617. SECHOVSKY V, 1988, J APPL PHYS, V63, P3070, DOI 10.1063/1.340899. Sechovsky V., 1988, HDB MAGNETIC MAT, V4, P309, DOI 10.1016/S1574-9304(05)80079-3. Shick AB, 1996, PHYS REV B, V54, P1610, DOI 10.1103/PhysRevB.54.1610. Shim JH, 2007, NATURE, V446, P513, DOI 10.1038/nature05647. Soderlind P, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.157101. SWITENDICK AC, 1982, J LESS-COMMON MET, V88, P257, DOI 10.1016/0022-5088(82)90229-6. Taylor CD, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.224408. Taylor CD, 2010, ACTA MATER, V58, P1045, DOI 10.1016/j.actamat.2009.10.021. Tkach I, 2014, PHYSICA C, V498, P14, DOI 10.1016/j.physc.2013.12.003. Tkach I, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.060407. TROC R, 1995, J ALLOY COMPD, V219, P1, DOI 10.1016/0925-8388(94)05062-7. Turek I, 2007, J ALLOY COMPD, V431, P37, DOI 10.1016/j.jallcom.2006.05.057. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.174430. Turek I., 1997, ELECT STRUCTURE DISO. WALLASH A, 1985, J APPL PHYS, V57, P3143, DOI 10.1063/1.335184. WARD JW, 1979, J PHYS-PARIS, V40, P15, DOI 10.1051/jphyscol:1979403. Xie W, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.235128. Zhang YJ, 2012, J NUCL MATER, V430, P137, DOI 10.1016/j.jnucmat.2012.07.002.}",
	number-of-cited-references = "{53}",
	times-cited = "{4}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{21}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{CD7OV}",
	unique-id = "{ISI:000351281000002}"
}

Y Jiraskova, J Bursik, M Hapla and I Turek. Influence of Molybdenum on the Alloying and Physical Properties of Fe-Al. JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM 28(3, SI):905-910, Březen 2015. BibTeX

@article{ ISI:000350360800030,
	author = "Jiraskova, Y. and Bursik, J. and Hapla, M. and Turek, I.",
	title = "{Influence of Molybdenum on the Alloying and Physical Properties of Fe-Al}",
	journal = "{JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM}",
	year = "{2015}",
	volume = "{28}",
	number = "{3, SI}",
	pages = "{905-910}",
	month = "{MAR}",
	abstract = "{Mechanical alloying of the Fe powder with 29 at.\% Al and 1.5 at.\% Mo, corresponding to THERMENOL composition, is investigated. The main attention is devoted to the dynamics of the alloying process, phase composition, and magnetic properties studied using X-ray diffraction (XRD), Mossbauer spectrometry, electron microscopy, and magnetic measurements. The analyses of the XRD patterns after various times of milling yielded stepwise alloying up to the formation of a quasi-binary (Fe-Mo)-Al system after 32 h. In this state, the alloy has reached the finest structure of homogeneously distributed elements well established by the scanning electron microscopy. However, the subsequent milling step has led to a partial decomposition. This is clearly visible by the XRD as well as by the Mossbauer phase analysis and reflected in the macroscopic magnetic characteristics after both milling and thermal treatments. The alloying by Mo induced changes in magnetic properties depending on the milling time: for shorter times, the coercivity has been reduced as compared to Fe-Al alloys of similar compositions, whereas for longer times, an increase in the coercivity due to induced strains and defects has been observed.}",
	publisher = "{SPRINGER}",
	address = "{233 SPRING ST, NEW YORK, NY 10013 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Jiraskova, Y (Reprint Author), AS CR, Inst Phys Mat, CEITEC IPM, CZ-61662 Brno, Czech Republic. Jiraskova, Y., AS CR, Inst Phys Mat, CEITEC IPM, CZ-61662 Brno, Czech Republic. Bursik, J.; Hapla, M.; Turek, I., AS CR, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1007/s10948-014-2648-3}",
	issn = "{1557-1939}",
	eissn = "{1557-1947}",
	keywords = "{Nanostructured material; Mechanical alloying; Magnetic properties; Grain core; Defects}",
	keywords-plus = "{MAGNETIC-BEHAVIOR; X-RAY; MO; MOSSBAUER}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Jiraskova, Yvonna/E-3682-2012 Turek, Ilja/G-5553-2014 Bursik, Jiri/B-8684-2013}",
	orcid-numbers = "{Bursik, Jiri/0000-0002-6749-9788}",
	funding-acknowledgement = "{Czech Science Foundation {[}P108/11/1350]; CEITEC {[}CZ.1.05/1.1.00/02.0068]; European Regional Development Fund at IPM Brno}",
	funding-text = "{The authors thank for the financial support from Czech Science Foundation, project P108/11/1350, and the CEITEC, project CZ.1.05/1.1.00/02.0068 (financed by European Regional Development Fund at IPM Brno).}",
	cited-references = "{Alcazar G.A.P., 1987, PHYS REV B, V63. Amils X, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.052402. Cardellini F, 1998, J MATER SCI, V33, P2519, DOI 10.1023/A:1004388732126. Enzo S, 1996, ACTA MATER, V44, P3105, DOI 10.1016/1359-6454(95)00431-9. Gonzales-Ormeno PG, 2005, CALPHAD, V29, P222, DOI 10.1016/j.calphad.2005.07.006. Jartych E, 2002, J ALLOY COMPD, V337, P69, DOI 10.1016/S0925-8388(01)01959-4. Jiraskova Y, 2013, J SUPERCOND NOV MAGN, V26, P1717, DOI 10.1007/s10948-012-2049-4. Jiraskova Y, 2013, J ALLOY COMPD, V568, P106, DOI 10.1016/j.jallcom.2013.03.087. Lozano DO, 2004, HYPERFINE INTERACT, V156, P569. Lu L, 1997, J MATER PROCESS TECH, V67, P100, DOI 10.1016/S0924-0136(96)02826-9. Moumeni H, 2006, J ALLOY COMPD, V419, P140, DOI 10.1016/j.jallcom.2006.03.040. Young R.A., 1993, RIETVELD METOD. Zak T, 2006, SURF INTERFACE ANAL, V38, P710, DOI 10.1002/sia.2285. ZAK T, 1984, J MAGN MAGN MATER, V41, P47, DOI 10.1016/0304-8853(84)90133-1. Zamora LE, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.094418.}",
	number-of-cited-references = "{15}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{J. Supercond. Nov. Magn}",
	doc-delivery-number = "{CC4XZ}",
	unique-id = "{ISI:000350360800030}"
}

J Kudrnovsky, V Drchal and I Turek. Physical properties of FeRh alloys: The antiferromagnetic to ferromagnetic transition. PHYSICAL REVIEW B 91(1), 2015. BibTeX

@article{ ISI:000348676500001,
	author = "Kudrnovsky, J. and Drchal, V. and Turek, I.",
	title = "{Physical properties of FeRh alloys: The antiferromagnetic to ferromagnetic transition}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2015}",
	volume = "{91}",
	number = "{1}",
	month = "{JAN 29}",
	abstract = "{The electronic, magnetic, thermodynamical, and transport properties of FeRh alloys are studied from first principles. We present a unified approach to the phase stability, an estimate of exchange interactions in various magnetic phases, and transport properties including the effect of temperature which are all based on the same electronic-structure model. Emphasis is put on the transition between the ferromagnetic (FM) and antiferromagnetic (AFM) phases. Such a study is motivated by a recent suggestion of FeRh as a room-temperature antiferromagnetic memory resistor. The theory predicts the order-disorder transformation from the hypothetical disordered bcc phase into ordered B2 phase. Comparison of exchange interactions in the magnetically ordered FM and AFM phases with corresponding spin-disordered counterparts allows us to identify relevant interactions which are precursors of magnetically ordered phases. The most important result is the explanation of a dramatic decrease of the resistivity accompanying the AFM to FMphase transition which is due to the spin disorder present in the system. The study of the anisotropic magnetoresistance in the AFM phase found recently experimentally is extended also to finite temperatures.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Turek, I., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CZ-12116 Prague 2, Czech Republic.}",
	doi = "{10.1103/PhysRevB.91.014435}",
	article-number = "{014435}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{COHERENT-POTENTIAL APPROXIMATION; PHASE-TRANSFORMATIONS; EXCHANGE INTERACTIONS; ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; TRANSPORT; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	funding-acknowledgement = "{Czech Science Foundation {[}14-37427G]}",
	funding-text = "{The authors acknowledge support from Czech Science Foundation (Grant No. 14-37427G).}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. CONNOLLY JWD, 1983, PHYS REV B, V27, P5169, DOI 10.1103/PhysRevB.27.5169. Czaja P, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.014411. de Vries MA, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/1/013008. Deak A, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.224401. Derlet PM, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.174431. Ducastelle F., 1991, ORDER PHASE STABILIT. Glasbrenner JK, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.174408. Gruner ME, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.064415. Gu RY, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.012403. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. JEZIERSKI A, 1995, J MAGN MAGN MATER, V140, P81, DOI 10.1016/0304-8853(94)01146-X. Kovacik R, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.134417. Kubaschewski O., 1982, IRON BINARY PHASE DI. Kubler J., 2000, THEORY ITINERANT ELE. KUDRNOVSKY J, 1994, PHYS REV B, V50, P9603, DOI 10.1103/PhysRevB.50.9603. Kudrnovsky J, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.224422. Kudrnovsky J, 2013, J SUPERCOND NOV MAGN, V26, P1749, DOI 10.1007/s10948-012-2080-5. Kudrnovsky J, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.144423. Kudrnovsky J, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.214436. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Marti X, 2014, NAT MATER, V13, P367, DOI {[}10.1038/nmat3861, 10.1038/NMAT3861]. Mirbt S, 1996, PHYS REV B, V54, P6382, DOI 10.1103/PhysRevB.54.6382. MORUZZI VL, 1992, PHYS REV B, V46, P2864, DOI 10.1103/PhysRevB.46.2864. Mryasov ON, 2005, PHASE TRANSIT, V78, P197, DOI 10.1080/01411590412331316591. Sandratskii LM, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.174408. Shick AB, 1996, PHYS REV B, V54, P1610, DOI 10.1103/PhysRevB.54.1610. SHIRANE G, 1964, PHYS REV, V134, P1547. Staunton JB, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.054427. STAUNTON JB, 1994, REP PROG PHYS, V57, P1289, DOI 10.1088/0034-4885/57/12/002. Suzuki I, 2011, J APPL PHYS, V109, DOI 10.1063/1.3556754. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.014405. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2002, J MAGN MAGN MATER, V240, P162, DOI 10.1016/S0304-8853(01)00743-0. Turek I, 2000, LECT NOTES PHYS, V535, P349. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WAYNE RC, 1968, PHYS REV, V170, P523, DOI 10.1103/PhysRev.170.523. Wysocki AL, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.224423. YUASA S, 1995, J MAGN MAGN MATER, V140, P79, DOI 10.1016/0304-8853(94)01136-2.}",
	number-of-cited-references = "{42}",
	times-cited = "{17}}, Usage-Count-(Last-180-days) = {{9}",
	usage-count-since-2013 = "{60}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{CA1ML}",
	unique-id = "{ISI:000348676500001}"
}

Y Jiraskova, J Bursik, I Turek, J Cizek and I Prochazka. Structural and magnetic relaxations of mechanically alloyed Fe-Mo. JOURNAL OF PHYSICS D-APPLIED PHYSICS 47(43), 2014. BibTeX

@article{ ISI:000343150500003,
	author = "Jiraskova, Y. and Bursik, J. and Turek, I. and Cizek, J. and Prochazka, I.",
	title = "{Structural and magnetic relaxations of mechanically alloyed Fe-Mo}",
	journal = "{JOURNAL OF PHYSICS D-APPLIED PHYSICS}",
	year = "{2014}",
	volume = "{47}",
	number = "{43}",
	month = "{OCT 29}",
	abstract = "{The Fe-Mo sample mechanically alloyed for 250 h under air atmosphere was exposed to a series of isothermal and isochronal treatments with the aim to follow changes in the structure and magnetic properties regarding relaxations of strains and defects and stability of chemical composition. For this purpose x-ray diffraction, positron annihilation, scanning and transmission electron microscopy, and Mossbauer spectrometry were applied and supplemented by magnetic measurements. The temperatures for the magnetic studies were selected from the thermomagnetic curve of the as-prepared sample. The time interval of isothermal treatments was chosen from 0-300 min. The Mo content in the bcc-Fe(Mo) phase has substantially exceeded the equilibrium solubility limit but it has been found to decrease under the thermal treatment which was reflected by decreasing lattice parameters. The small crystallite size of approximately 10 nm in the initial state starts to grow only after a certain amount of strains induced by severe deformation, due to mechanical alloying being released. This was also reflected in the magnetic parameters. From their time dependences at selected temperatures the characteristic relaxation times were obtained and used for a calculation of the activation enthalpy of relaxation processes.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Jiraskova, Y (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Jiraskova, Y.; Bursik, J.; Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Cizek, J.; Prochazka, I., Charles Univ Prague, Fac Math \& Phys, Dept Low Temp Phys, CZ-18000 Prague, Czech Republic.}",
	doi = "{10.1088/0022-3727/47/43/435001}",
	article-number = "{435001}",
	issn = "{0022-3727}",
	eissn = "{1361-6463}",
	keywords = "{mechanical alloying; nanostructure; magnetic properties; relaxation}",
	keywords-plus = "{POSITRON-LIFETIME SPECTROSCOPY; IRON-ALUMINUM ALLOYS; NANOCRYSTALLINE MATERIALS; THERMODYNAMIC PROPERTIES; MOSSBAUER-SPECTRA; BCC; ANNIHILATION; PRESSURE; CRYSTALS; BEHAVIOR}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Applied}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Cizek, Jakub/F-6163-2010 Jiraskova, Yvonna/E-3682-2012 Turek, Ilja/G-5553-2014 Bursik, Jiri/B-8684-2013}",
	orcid-numbers = "{Cizek, Jakub/0000-0001-9961-8545 Bursik, Jiri/0000-0002-6749-9788}",
	funding-acknowledgement = "{Czech Science Foundation {[}P108/11/1350, P108-13-09436S]}",
	funding-text = "{The authors would like to thank the financial support given to this work by the Czech Science Foundation through Projects P108/11/1350 and P108-13-09436S. Special thanks are given to M. Hapla (IPM Brno) for the magnetic measurements.}",
	cited-references = "{Becvar F, 2007, NUCL INSTRUM METH B, V261, P871, DOI 10.1016/j.nimb.2007.03.042. Becvar F, 2005, NUCL INSTRUM METH A, V539, P372, DOI 10.1016/j.nima.2004.09.031. Blachowski A, 2009, J ALLOY COMPD, V482, P23, DOI 10.1016/j.jallcom.2009.03.177. CHIEN CL, 1986, J MAGN MAGN MATER, V54-7, P291, DOI 10.1016/0304-8853(86)90593-7. Cizek J, 2000, PHYS STATUS SOLIDI A, V178, P651, DOI 10.1002/1521-396X(200004)178:2<651::AID-PSSA651>3.0.CO;2-O. Cizek J, 2013, J PHYS CONF SER, V443, DOI 10.1088/1742-6596/443/1/012008. Cornell R M, 1996, IRON OXIDES STRUCTUR, P146. ELDRIDGE J, 1964, T METALL SOC AIME, V230, P226. FUCHS A, 1965, ACTA CRYSTALLOGR, V19, P488, DOI 10.1107/S0365110X65003742. HAUTOJARVI P, 1980, PHYS REV LETT, V44, P1326, DOI 10.1103/PhysRevLett.44.1326. Hautojarvi P, 1995, P INT SCH PHYS, V125, P491. Jartych E, 2002, J ALLOY COMPD, V337, P69, DOI 10.1016/S0925-8388(01)01959-4. Jiraskova Y, 2013, J SUPERCOND NOV MAGN, V26, P1717, DOI 10.1007/s10948-012-2049-4. Jiraskova Y, 2009, J ALLOY COMPD, V477, P55, DOI 10.1016/j.jallcom.2008.11.006. Kass M, 2002, INTERMETALLICS, V10, P951, DOI 10.1016/S0966-9795(02)00115-2. Koch C. C., 1993, Nanostructured Materials, V2, P109, DOI 10.1016/0965-9773(93)90016-5. Kuyama J, 1991, J JAPAN SOC POWDER M, V38, P910. Li S., 1993, Nanostructured Materials, V2, P653, DOI 10.1016/0965-9773(93)90040-I. MARCUS HL, 1967, PHYS REV, V162, P259, DOI 10.1103/PhysRev.162.259. Massalski T.B., 1990, BINARY ALLOY PHASE D, P1726. Maurice D, 1996, METALL MATER TRANS A, V27, P1981, DOI 10.1007/BF02651947. Michalecki T, 2003, NUKLEONIKA, V48, pS45. Moumeni H, 2006, J ALLOY COMPD, V419, P140, DOI 10.1016/j.jallcom.2006.03.040. Nazarov A. A., 1994, Nanostructured Materials, V4, P93, DOI 10.1016/0965-9773(94)90131-7. NAZAROV AA, 1993, ACTA METALL MATER, V41, P1033, DOI 10.1016/0956-7151(93)90152-I. NIEH TG, 1991, SCRIPTA METALL MATER, V25, P955, DOI 10.1016/0956-716X(91)90256-Z. Oberdorfer B, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.146101. Olsson Par A T, 2009, COMP MATER SCI, V47, P135. PARK YK, 1986, PHYS REV B, V34, P823, DOI 10.1103/PhysRevB.34.823. Prochazka I, 1997, MATER SCI FORUM, V255-2, P772. PUSKA MJ, 1983, J PHYS F MET PHYS, V13, P333, DOI 10.1088/0305-4608/13/2/009. RADCLIFFE SV, 1961, ACTA METALL MATER, V9, P169, DOI 10.1016/0001-6160(61)90066-9. Robles JMC, 2007, J PHYS-CONDENS MAT, V19, DOI 10.1088/0953-8984/19/17/176222. SMEDSKJAER LC, 1980, J PHYS F MET PHYS, V10, P2237, DOI 10.1088/0305-4608/10/10/019. SUMIYAMA K, 1987, J PHYS CHEM SOLIDS, V48, P255, DOI 10.1016/0022-3697(87)90021-7. SURBECK H, 1977, HELV PHYS ACTA, V50, P705. SURYANARAYANA C, 1995, INT MATER REV, V40, P41. Turek I., 1997, ELECT STRUCTURE DISO. West R. N., 1979, Positrons in solids, P89. Young R. A., 1993, RIETVELD METHOD INT. Zak T, 2006, SURF INTERFACE ANAL, V38, P710, DOI 10.1002/sia.2285.}",
	number-of-cited-references = "{41}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{13}",
	journal-iso = "{J. Phys. D-Appl. Phys.}",
	doc-delivery-number = "{AQ9EN}",
	unique-id = "{ISI:000343150500003}"
}

J Kudrnovsky, V Drchal, L Bergqvist, J Rusz and I Turek. Unified approach to electronic, thermodynamical, and transport properties of Fe3Si and Fe3Al alloys. PHYSICAL REVIEW B 90(13), 2014. BibTeX

@article{ ISI:000344018900002,
	author = "Kudrnovsky, J. and Drchal, V. and Bergqvist, L. and Rusz, J. and Turek, I.",
	title = "{Unified approach to electronic, thermodynamical, and transport properties of Fe3Si and Fe3Al alloys}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2014}",
	volume = "{90}",
	number = "{13}",
	month = "{OCT 10}",
	abstract = "{The electronic, thermodynamical, and transport properties of ordered Fe3X (X = Al, Si) alloys are studied from first principles. We present here a unified approach to the phase stability, the estimate of the Curie temperature, the temperature dependence of sublattice magnetizations, magnon spectra, the spin-stiffnesses, and residual resistivities. An important feature of the present study is that all calculated physical properties are determined in the framework of the same first-principles electronic structure model combined with the effective Ising and Heisenberg Hamiltonians used for study of the thermodynamical properties of alloys. Curie temperatures, spin-stiffnesses, and magnon spectra are determined using the same calculated exchange integrals. Finally, the transport properties are calculated using the linear-response theory. Our theoretical estimates compare well with available experimental data. In particular, calculations predict (in agreement with experiment) the ordered D0(3) phase as the ground-state alloy structure, demonstrate that a correct relation of Curie temperatures of Fe3Al/Fe3Si alloys can be obtained only by going beyond a simple mean-field approximation, provide reasonable estimates of spin-stiffnesses, and give resistivities compatible with structural disorder observed in the experiment. Although the calculated temperature dependences of the Fe magnetization on different sublattices are similar, they nevertheless deviate more than in the experiment, and we discuss a possible origin.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Bergqvist, L., KTH Royal Inst Technol, Dept Mat \& Nanophys, S-16440 Kista, Sweden. Bergqvist, L., KTH Royal Inst Technol, Swedish E Sci Res Ctr SeRC, S-16440 Kista, Sweden. Rusz, J., Uppsala Univ, Dept Phys \& Astron, S-75120 Uppsala, Sweden. Turek, I., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CZ-12116 Prague 2, Czech Republic.}",
	doi = "{10.1103/PhysRevB.90.134408}",
	article-number = "{134408}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{SPIN-DENSITY; ELECTRICAL-RESISTIVITY; EXCHANGE INTERACTIONS; ORDERED FE3AL; WAVES; IRON; APPROXIMATION; MAGNETS; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bergqvist, Lars/J-5282-2014 Turek, Ilja/G-5553-2014 Rusz, Jan/A-3324-2008}",
	orcid-numbers = "{Bergqvist, Lars/0000-0003-4341-5663 Rusz, Jan/0000-0002-0074-1349}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/12/0692]; Czech-Hungarian collaboration; Swedish Research Council (VR); Goran Gustafsson Foundation; Carl Tryggers Foundation; SeRC; Hungarian Scientific Research Fund (OTKA) {[}84078, 101456]}",
	funding-text = "{J.K., V.D., and I.T. acknowledge the support of the Czech Science Foundation (Grant No. P204/12/0692) and the Czech-Hungarian collaboration. J.R. acknowledges the Swedish Research Council and the EU project REFREEPERMAG. L.B. acknowledges support from the Swedish Research Council (VR), Goran Gustafsson Foundation, Carl Tryggers Foundation, and SeRC. B.U. and I.V. acknowledge support from the Hungarian Scientific Research Fund (OTKA) through Grants No. 84078 and No. 101456, respectively.}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Antonini B., 1971, J PHYS, V32, pC1, DOI 10.1051/jphyscol:19711426. Antropov VP, 2003, J MAGN MAGN MATER, V262, pL192, DOI 10.1016/S0304-8853(03)00206-3. Ashcroft N.W., 1976, SOLID STATE PHYS, P708. Bergman A, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.144416. Bradley AJ, 1932, P R SOC LOND A-CONTA, V136, P210, DOI 10.1098/rspa.1932.0075. Bruno P, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.087205. BURCH TJ, 1974, PHYS REV LETT, V33, P421, DOI 10.1103/PhysRevLett.33.421. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Christensen N. E., 2008, INT J NANOELECTRON M, V1, P1. CONNOLLY JWD, 1983, PHYS REV B, V27, P5169, DOI 10.1103/PhysRevB.27.5169. Dennler S, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.174303. DOBRZYNSKI L, 1988, PHYS REV B, V37, P7175, DOI 10.1103/PhysRevB.37.7175. Ducastelle F., 1991, ORDER PHASE STABILIT. FRIKKEE E, 1978, J PHYS F MET PHYS, V8, pL141, DOI 10.1088/0305-4608/8/6/006. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. ISHIDA S, 1976, J PHYS SOC JPN, V41, P1570, DOI 10.1143/JPSJ.41.1570. Kubaschewski O., 1982, IRON BINARY PHASE DI. KUDRNOVSKY J, 1994, PHYS REV B, V50, P9603, DOI 10.1103/PhysRevB.50.9603. Kudrnovsky J, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.224422. Lechermann F, 2002, PHYS REV B, V65, DOI {[}10.1103/PhysRevB.65.132104, 10.1103/PhysRevB.132104]. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Morris DG, 1996, ACTA MATER, V44, P2847, DOI 10.1016/1359-6454(95)00382-7. MOSS J, 1972, J PHYS F MET PHYS, V2, P358, DOI 10.1088/0305-4608/2/2/026. MUIR WB, 1982, PHYS REV B, V25, P726, DOI 10.1103/PhysRevB.25.726. Nakayama Y., 1988, LANDOLT BORNSTEIN SE, V19c. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. PAOLETTI A, 1964, NUOVO CIMENTO, V32, P25, DOI 10.1007/BF02732588. Parzych G, 2010, ACTA PHYS POL A, V117, P578. PICKART SJ, 1961, PHYS REV, V123, P1163, DOI 10.1103/PhysRev.123.1163. RAUSCH JB, 1977, J APPL PHYS, V48, P487, DOI 10.1063/1.323692. Rhee JY, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.094411. Ruban AV, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.024202. Rusz J, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.174408. Rusz J., 2005, THESIS CHARLES U. Skubic B, 2008, J PHYS-CONDENS MAT, V20, DOI 10.1088/0953-8984/20/31/315203. STEARNS MB, 1968, PHYS REV, V168, P588, DOI 10.1103/PhysRev.168.588. SWIHART JC, 1986, PHYS REV LETT, V57, P1181, DOI 10.1103/PhysRevLett.57.1181. Switendick A. C., 1976, SOLID STATE COMMUN, V19, P511. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2000, LECT NOTES PHYS, V535, P349. Vincze I., UNPUB. VOSKO SH, 1980, CAN J PHYS, V58, P1200.}",
	number-of-cited-references = "{44}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{21}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{AS1DO}",
	unique-id = "{ISI:000344018900002}"
}

J Kudrnovsky, V Drchal and I Turek. Galvanomagnetic properties of partially ordered L1(0) FePt alloys. PHYSICAL REVIEW B 89(22), 2014. BibTeX

@article{ ISI:000339049000012,
	author = "Kudrnovsky, J. and Drchal, V. and Turek, I.",
	title = "{Galvanomagnetic properties of partially ordered L1(0) FePt alloys}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2014}",
	volume = "{89}",
	number = "{22}",
	month = "{JUN 30}",
	abstract = "{The effect of the long-range order (LRO) on the longitudinal (rho(xx),rho(zz)) and anomalous Hall (rho(xy)) resistivities as well as on the anisotropic magnetoresistance (AMR) in partially ordered L1(0) FePt alloys is studied from first principles. The linear-response theory as formulated in the framework of the relativistic tight-binding linear muffin-tin orbital method which includes both the Fermi-surface and Fermi-sea terms is used. The effect of disorder is treated by means of the coherent-potential approximation. The main result is a weak dependence of the anomalous Hall conductivity sigma(xy) on the LRO, which is, however, compatible with resistivities rho(xx) and rho(xy), which both depend strongly on the disorder present in the system. The resistivity and the AMR are predicted to increase with increasing degree of the LRO. We also investigate the effect of spin fluctuations on studied quantities using a simple model of the spin disorder. We have found good agreement between the theory and the recent experiment.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.89.224422}",
	article-number = "{224422}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{CONDUCTIVITY; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/11/1228]}",
	funding-text = "{The authors acknowledge financial support by the Czech Science Foundation (Grant No. P204/11/1228).}",
	cited-references = "{Banhart J, 2002, EUROPHYS LETT, V58, P264, DOI 10.1209/epl/i2002-00632-4. BASTIN A, 1971, J PHYS CHEM SOLIDS, V32, P1811, DOI 10.1016/S0022-3697(71)80147-6. Chen M, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3556616. Crepieux A, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.014416. Czaja P, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.014411. FISHER ME, 1968, PHYS REV LETT, V20, P665, DOI 10.1103/PhysRevLett.20.665. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HSU Y, 1979, J APPL PHYS, V50, P1907, DOI 10.1063/1.327160. KASUYA T, 1956, PROG THEOR PHYS, V16, P58, DOI 10.1143/PTP.16.58. Kodderitzsch D, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/5/053009. Kontani H, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.184416. Kudrnovsky J, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.014422. Kudrnovsky J, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.144423. Kudrnovsky J, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.214436. Kudrnovsky J., 2012, J SUPERCOND NOV MAGN, V26, P1749. Lowitzer S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.266604. Lowitzer S, 2010, EPL-EUROPHYS LETT, V92, DOI 10.1209/0295-5075/92/37009. Miyasato T, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.086602. Nagaosa N, 2010, REV MOD PHYS, V82, P1539, DOI 10.1103/RevModPhys.82.1539. Seemann KM, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.076402. Shick AB, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.172407. STREDA P, 1982, J PHYS C SOLID STATE, V15, pL717, DOI 10.1088/0022-3719/15/22/005. Szunyogh L, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.020403. Tulip PR, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.165116. Turek I, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.064405. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.014405. Weischenberg J, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.106601. WIRTHS R, 1976, PHYS STATUS SOLIDI A, V33, P135, DOI 10.1002/pssa.2210330113. Ziman J., 1960, ELECT PHONONS THEORY.}",
	number-of-cited-references = "{29}",
	times-cited = "{6}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{15}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{AL3SJ}",
	unique-id = "{ISI:000339049000012}"
}

Y Jiraskova, J Bursik, I Turek, M Hapla, A Titov and O Zivotsky. Phase and magnetic studies of the high-energy alloyed Ni-Fe. JOURNAL OF ALLOYS AND COMPOUNDS 594:133-140, 2014. BibTeX

@article{ ISI:000331723100023,
	author = "Jiraskova, Y. and Bursik, J. and Turek, I. and Hapla, M. and Titov, A. and Zivotsky, O.",
	title = "{Phase and magnetic studies of the high-energy alloyed Ni-Fe}",
	journal = "{JOURNAL OF ALLOYS AND COMPOUNDS}",
	year = "{2014}",
	volume = "{594}",
	pages = "{133-140}",
	month = "{MAY 5}",
	abstract = "{A report on the systematic study of the changes in the phase composition, morphology, and magnetic properties of the Fe-Ni alloy is presented. Structure studies based on the X-ray diffraction and transmission electron microscopy reveal that the step-wise alloying by high energy ball milling for time up to 6000 min proceeds in three stages: (i) solid state diffusion of Ni into bcc-Fe, (ii) the ongoing diffusion of Ni into bcc-Fe and simultaneous diffusion of Fe into fcc-Ni, and (iii) structural transformation of bcc-FeNi into fcc-NiFe and final formation of the Ni3Fe phase. Except for ferromagnetic phases, a small contribution of the paramagnetic component is detected by Mossbauer spectrometry. The alloying process is accompanied by an initial rapid decrease in crystallite size followed by a sluggish decrease down to the mean final size of 12 nm. The changes in the grain size and phase compositions are reflected in magnetic characteristics. The results yielded from the Henkel graphs confirm a dominance of the negative particle interactions. (C) 2014 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE SA}",
	address = "{PO BOX 564, 1001 LAUSANNE, SWITZERLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Jiraskova, Y (Reprint Author), AS CR, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Jiraskova, Y.; Bursik, J.; Turek, I.; Hapla, M., AS CR, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Titov, A.; Zivotsky, O., Tech Univ Ostrava, Dept Phys, CZ-70833 Ostrava, Czech Republic. Titov, A.; Zivotsky, O., Tech Univ Ostrava, Nanotechnol Ctr, CZ-70833 Ostrava, Czech Republic.}",
	doi = "{10.1016/j.jallcom.2014.01.138}",
	issn = "{0925-8388}",
	eissn = "{1873-4669}",
	keywords = "{Ni-Fe; Mechanical alloying; Magnetic properties; Microstructure; Particle interactions}",
	keywords-plus = "{NANOCRYSTALLINE NI; ORDER-DISORDER; INVAR-ALLOYS; MOSSBAUER; POWDERS; NI3FE; PARTICLES; NICKEL}",
	research-areas = "{Chemistry; Materials Science; Metallurgy \& Metallurgical Engineering}",
	web-of-science-categories = "{Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy \& Metallurgical Engineering}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bursik, Jiri/B-8684-2013 Jiraskova, Yvonna/E-3682-2012 Turek, Ilja/G-5553-2014 }",
	orcid-numbers = "{Bursik, Jiri/0000-0002-6749-9788 Zivotsky, Ondrej/0000-0002-5715-468X}",
	funding-acknowledgement = "{Czech Science Foundation {[}P108/11/1350]; Nanotechnology - the basis for international cooperation project {[}CZ.1.07/2.3.00/20.0074]}",
	funding-text = "{The work was supported by the Czech Science Foundation (P108/11/1350) and by the Nanotechnology - the basis for international cooperation project (CZ.1.07/2.3.00/20.0074).}",
	cited-references = "{Albertsen J.F., 1978, NATURE, V273, P473. BAKONYI I, 1993, NANOSTRUCT MATER, V3, P155, DOI 10.1016/0965-9773(93)90073-K. Chicinas I, 2005, J MAGN MAGN MATER, V290, P1531, DOI 10.1016/j.jmmm.2004.11.249. Chinnasamy CN, 2001, MAT SCI ENG A-STRUCT, V304, P408, DOI 10.1016/S0921-5093(00)01518-5. Coey JMD, 2001, J ALLOY COMPD, V326, P2, DOI 10.1016/S0925-8388(01)01239-7. DANON J, 1980, NATURE, V284, P537, DOI 10.1038/284537a0. Daroczi L, 1995, NANOSTRUCT MATER, V6, P981, DOI 10.1016/0965-9773(95)00225-1. Feng YB, 2012, J ALLOY COMPD, V513, P455, DOI 10.1016/j.jallcom.2011.10.079. Gheisari K, 2013, J ALLOY COMPD, V574, P71, DOI 10.1016/j.jallcom.2013.03.277. Gheisari K, 2013, J MAGN MAGN MATER, V343, P133, DOI 10.1016/j.jmmm.2013.05.007. Gheisari K, 2009, J ALLOY COMPD, V472, P416, DOI 10.1016/j.jallcom.2008.04.074. Gleiter H., 1992, Nanostructured Materials, V1, P1, DOI 10.1016/0965-9773(92)90045-Y. HENKEL O, 1964, PHYS STATUS SOLIDI, V7, P919, DOI 10.1002/pssb.19640070320. HERZER G, 1997, HANDB MAG M, V10, P415, DOI 10.1016/S1567-2719(97)10007-5. KUHRT C, 1993, J APPL PHYS, V73, P1975, DOI 10.1063/1.353162. LARSEN L, 1982, PHYS REV LETT, V48, P1054, DOI 10.1103/PhysRevLett.48.1054. Li JG, 2004, NANOTECHNOLOGY, V15, P982, DOI 10.1088/0957-4484/15/8/020. Li XG, 1997, J MAGN MAGN MATER, V170, P339, DOI 10.1016/S0304-8853(97)00039-5. Loeffler J.F., 1998, PHYS REV B, V57, P2915. MEEVES BH, 1994, HYPERFINE INTERACT, V92, P955, DOI 10.1007/BF02065718. Mehrer H., 1990, SOLID STATE PHYS, V26. PFEIFER F, 1980, J MAGN MAGN MATER, V19, P190, DOI 10.1016/0304-8853(80)90592-2. Restrepo J, 1997, J APPL PHYS, V81, P4101, DOI 10.1063/1.365564. Satula D, 2003, NUKLEONIKA, V48, pS71. STONER EC, 1948, PHILOS TR R SOC S-A, V240, P599, DOI 10.1098/rsta.1948.0007. Thamm S, 1996, J MAGN MAGN MATER, V154, P254, DOI 10.1016/0304-8853(95)00585-4. Thamm S, 1998, J MAGN MAGN MATER, V184, P245, DOI 10.1016/S0304-8853(97)01135-9. Vajpai S, 2009, J MATER SCI, V44, P129, DOI 10.1007/s10853-008-3111-2. Villars P., 1991, PERSONS HDB CRYSTALL, V3, P334. WAKELIN RJ, 1953, P PHYS SOC LOND B, V66, P221, DOI 10.1088/0370-1301/66/3/310. WASSERMAN EF, 1990, FERROMAGNETIC MATERI, V5, P237. Wei XW, 2006, MATER CHEM PHYS, V100, P481, DOI 10.1016/j.matchemphys.2006.01.030. Young RA, 1993, RIETVELD METHOD. Zak T, 2006, SURF INTERFACE ANAL, V38, P710, DOI 10.1002/sia.2285. Zhu H, 2001, J PHYS-CONDENS MAT, V13, P1727, DOI 10.1088/0953-8984/13/8/309. Zhu XQ, 2012, J MAGN MAGN MATER, V324, P2899, DOI 10.1016/j.jmmm.2012.04.035.}",
	number-of-cited-references = "{36}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{8}",
	usage-count-since-2013 = "{77}",
	journal-iso = "{J. Alloy. Compd.}",
	doc-delivery-number = "{AB3XI}",
	unique-id = "{ISI:000331723100023}"
}

X Marti, I Fina, C Frontera, Jian Liu, P Wadley, Q He, R J Paull, J D Clarkson, J Kudrnovsky, I Turek, J Kunes, D Yi, J-H Chu, C T Nelson, L You, E Arenholz, S Salahuddin, J Fontcuberta, T Jungwirth and R Ramesh. Room-temperature antiferromagnetic memory resistor. NATURE MATERIALS 13(4):367-374, Duben 2014. BibTeX

@article{ ISI:000333397100021,
	author = "Marti, X. and Fina, I. and Frontera, C. and Liu, Jian and Wadley, P. and He, Q. and Paull, R. J. and Clarkson, J. D. and Kudrnovsky, J. and Turek, I. and Kunes, J. and Yi, D. and Chu, J-H. and Nelson, C. T. and You, L. and Arenholz, E. and Salahuddin, S. and Fontcuberta, J. and Jungwirth, T. and Ramesh, R.",
	title = "{Room-temperature antiferromagnetic memory resistor}",
	journal = "{NATURE MATERIALS}",
	year = "{2014}",
	volume = "{13}",
	number = "{4}",
	pages = "{367-374}",
	month = "{APR}",
	abstract = "{The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.}",
	publisher = "{NATURE PUBLISHING GROUP}",
	address = "{MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Marti, X (Reprint Author), Univ Calif Berkeley, Dept Mat Sci \& Engn, Berkeley, CA 94720 USA. Marti, X.; Paull, R. J.; Clarkson, J. D.; Ramesh, R., Univ Calif Berkeley, Dept Mat Sci \& Engn, Berkeley, CA 94720 USA. Marti, X.; Paull, R. J.; Clarkson, J. D.; Ramesh, R., Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Marti, X.; Turek, I., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CR-12116 Prague 2, Czech Republic. Marti, X.; Wadley, P.; Kunes, J.; Jungwirth, T., Inst Phys ASCR, Vvi, Prague 16253 6, Czech Republic. Fina, I.; Frontera, C.; Fontcuberta, J., ICMAB CSIC, Inst Ciencia Mat Barcelona, E-08193 Bellaterra, Spain. Fina, I., Max Planck Inst Microstruct Phys, D-06120 Halle, Germany. Liu, Jian; Yi, D.; Chu, J-H.; Ramesh, R., Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Wadley, P.; Jungwirth, T., Univ Nottingham, Sch Phys \& Astron, Nottingham NG7 2RD, England. He, Q.; Arenholz, E., Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. Kudrnovsky, J., Inst Phys ASCR, Vvi, Prague 18221 8, Czech Republic. Turek, I., Inst Phys Mat ASCR, Vvi, Brno 61662, Czech Republic. Nelson, C. T., Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. You, L.; Salahuddin, S., Univ Calif Berkeley, Dept Elect Engn \& Comp Sci, Berkeley, CA 94720 USA.}",
	doi = "{10.1038/NMAT3861}",
	issn = "{1476-1122}",
	eissn = "{1476-4660}",
	keywords-plus = "{ANISOTROPIC MAGNETORESISTANCE; TUNNEL-JUNCTION; ALLOYS; PRINCIPLES}",
	research-areas = "{Chemistry; Materials Science; Physics}",
	web-of-science-categories = "{Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Kunes, Jan/B-4484-2008 Marti, Xavier/E-1103-2014 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Jungwirth, Tomas/G-8952-2014 Liu, Jian/I-6746-2013 He, Qing/E-3202-2010 Fontcuberta, Josep /A-7114-2013 Frontera, Carlos/B-4910-2008 Fina, Ignasi/G-2210-2011 Foundry, Molecular/G-9968-2014 }",
	orcid-numbers = "{Kunes, Jan/0000-0001-9682-7640 Marti, Xavier/0000-0003-1653-5619 KUDRNOVSKY, Josef/0000-0002-9968-6748 Jungwirth, Tomas/0000-0002-9910-1674 Liu, Jian/0000-0001-7962-2547 Frontera, Carlos/0000-0002-0091-4756 Fina, Ignasi/0000-0003-4182-6194 Fontcuberta, Josep/0000-0002-7955-2320}",
	funding-acknowledgement = "{NSF (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems) {[}EEC-1160504]; DOE; Office of Science, Office of Basic Energy Sciences of the US Department of Energy {[}DE-AC02-05CH11231]; Spanish Government {[}MAT2011-29269-C03, CSD2007-00041, MAT2012-33207]; Generalitat de Catalunya {[}SGR 00376]; Beatriu de Pinos postdoctoral scholarship {[}BP-A 00220]; Catalan Agency for Management of University; AGAUR-Generalitat de Catalunya; Grant Agency of the Czech Republic {[}P204/11/P339]; EPSRC {[}EP/K027808/1]; ERC {[}268066]; Praemium Academiae of the Academy of Sciences of the Czech Republic; Ministry of Education of the Czech Republic Grant {[}LM2011026]; STARnet FAME; I.T. acknowledge the Czech Science Foundation {[}P204/11/1228]}",
	funding-text = "{The authors acknowledge the support from the NSF (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems, Cooperative Agreement Award EEC-1160504) and DOE. Transmission electron microscopy characterization was performed at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. J.F. acknowledges financial support from the Spanish Government (Projects MAT2011-29269-C03, CSD2007-00041) and Generalitat de Catalunya (2009 SGR 00376); C. F. acknowledges financial support from the Spanish Government (Projects MAT2012-33207, CSD2007-00041). I. F. acknowledges a Beatriu de Pinos postdoctoral scholarship (2011 BP-A 00220) and the Catalan Agency for Management of University and Research Grants (AGAUR-Generalitat de Catalunya). X. M. acknowledges the Grant Agency of the Czech Republic No. P204/11/P339. Research at the University of Nottingham was funded by EPSRC grant EP/K027808/1. T.J. acknowledges support from the ERC Advanced Grant 268066, Praemium Academiae of the Academy of Sciences of the Czech Republic, and from the Ministry of Education of the Czech Republic Grant LM2011026. S. S. acknowledges funding by STARnet FAME. J. Kunes 83 and I.T. acknowledge the Czech Science Foundation No. P204/11/1228.}",
	cited-references = "{BANHART J, 1995, EUROPHYS LETT, V32, P517, DOI 10.1209/0295-5075/32/6/010. Brey L., APPL PHYS LETT, V85, P1996. Chappert C, 2007, NAT MATER, V6, P813, DOI 10.1038/nmat2024. Duine R., 2011, NAT MATER, V10, P345. Ebert H, 1996, PHYS REV B, V54, P8479, DOI 10.1103/PhysRevB.54.8479. Gao L, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.226602. Gould C, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.117203. Kimel AV, 2004, NATURE, V429, P850, DOI 10.1038/nature02659. Kunes J, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.024431. Kurebayashi H., 1893, PREPRINT. Liu LQ, 2012, SCIENCE, V336, P555, DOI 10.1126/science.1218197. Loth S, 2012, SCIENCE, V335, P196, DOI 10.1126/science.1214131. Marder M. P., 2000, CONDENSED MATTER PHY. Mariager S. O., PREPRINT. Marti X, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.017201. Marti X., PREPRINT. MCGUIRE TR, 1975, IEEE T MAGN, V11, P1018, DOI 10.1109/TMAG.1975.1058782. Miron IM, 2011, NATURE, V476, P189, DOI 10.1038/nature10309. Moser J, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.056601. Park BG, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.087204. Park BG, 2011, NAT MATER, V10, P347, DOI {[}10.1038/nmat2983, 10.1038/NMAT2983]. Petti D, 2013, APPL PHYS LETT, V102, DOI 10.1063/1.4804429. Rushforth AW, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.147207. Sharma M, 2011, J APPL PHYS, V109, DOI 10.1063/1.3573503. Shick AB, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.212409. Shick AB, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.024418. SHIRANE G, 1963, PHYS REV, V131, P183, DOI 10.1103/PhysRev.131.183. Stohr J, 1998, SURF REV LETT, V5, P1297, DOI 10.1142/S0218625X98001638. Szunyogh L, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.020403. Thomson W, 1857, P R SOC LONDON, V8, P546, DOI DOI 10.1098/RSPL.1856.0144. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.014405. Turek I, 2010, J PHYS CONF SER, V200, DOI 10.1088/1742-6596/200/5/052029. Umetsu RY, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2236103. Vernes A, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.134404. Wang YY, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.137201.}",
	number-of-cited-references = "{35}",
	times-cited = "{96}}, Usage-Count-(Last-180-days) = {{32}",
	usage-count-since-2013 = "{250}",
	journal-iso = "{Nat. Mater.}",
	doc-delivery-number = "{AD6UQ}",
	unique-id = "{ISI:000333397100021}"
}

I Turek, J Kudrnovsky and V Drchal. Fermi sea term in the relativistic linear muffin-tin-orbital transport theory for random alloys. PHYSICAL REVIEW B 89(6), 2014. BibTeX

@article{ ISI:000332380100006,
	author = "Turek, I. and Kudrnovsky, J. and Drchal, V.",
	title = "{Fermi sea term in the relativistic linear muffin-tin-orbital transport theory for random alloys}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2014}",
	volume = "{89}",
	number = "{6}",
	month = "{FEB 10}",
	abstract = "{We present a formulation of the so-called Fermi sea contribution to the conductivity tensor of spin-polarized random alloys within the fully relativistic tight-binding linear muffin-tin-orbital (TB-LMTO) method and the coherent potential approximation (CPA). We show that the configuration averaging of this contribution leads to the CPA-vertex corrections that are solely due to the energy dependence of the average single-particle propagators. Moreover, we prove that this contribution is indispensable for the invariance of the anomalous Hall conductivities with respect to the particular LMTO representation used in numerical implementation. Ab initio calculations for cubic ferromagnetic 3d transition metals (Fe, Co, Ni) and their random binary alloys (Ni-Fe, Fe-Si) indicate that the Fermi sea term is small against the dominating Fermi surface term. However, for more complicated structures and systems, such as hexagonal cobalt and selected ordered and disordered Co-based Heusler alloys, the Fermi sea term plays a significant role in the quantitative theory of the anomalous Hall effect.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic.}",
	doi = "{10.1103/PhysRevB.89.064405}",
	article-number = "{064405}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{COHERENT-POTENTIAL APPROXIMATION; ELECTRONIC-STRUCTURE CALCULATIONS; BINARY ALLOYS; FERROMAGNETICS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/11/1228]}",
	funding-text = "{The authors acknowledge financial support by the Czech Science Foundation (Grant No. P204/11/1228).}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. ANDERSEN OK, 1986, PHYS REV B, V34, P5253, DOI 10.1103/PhysRevB.34.5253. BASTIN A, 1971, J PHYS CHEM SOLIDS, V32, P1811, DOI 10.1016/S0022-3697(71)80147-6. Berger L, 1970, PHYS REV B-SOLID ST, V2, P4559, DOI 10.1103/PhysRevB.2.4559. BUTLER WH, 1985, PHYS REV B, V31, P3260, DOI 10.1103/PhysRevB.31.3260. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Chen H, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.017205. Crepieux A, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.014416. DHEER PN, 1967, PHYS REV, V156, P637, DOI 10.1103/PhysRev.156.637. Ebert H, 2011, REP PROG PHYS, V74, DOI 10.1088/0034-4885/74/9/096501. Fuh HR, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.144427. Hall EH, 1881, PHILOS MAG, V12, P157. Hou DZ, 2012, J PHYS-CONDENS MAT, V24, DOI 10.1088/0953-8984/24/48/482001. Husmann A, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.172417. Jungwirth T, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.207208. KARPLUS R, 1954, PHYS REV, V95, P1154, DOI 10.1103/PhysRev.95.1154. Kodderitzsch D, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/5/053009. Kontani H, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.184416. KUBO R, 1957, J PHYS SOC JPN, V12, P570, DOI 10.1143/JPSJ.12.570. Kudrnovsky J, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.014422. Kudrnovsky J, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.214436. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. Kubler J, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.012405. Lowitzer S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.266604. Nagaosa N, 2010, REV MOD PHYS, V82, P1539, DOI 10.1103/RevModPhys.82.1539. Naito T, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.195111. Onoda S, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.165103. Ouardi S, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.100401. Roman E, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.097203. Shick AB, 1996, PHYS REV B, V54, P1610, DOI 10.1103/PhysRevB.54.1610. Shiomi Y, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.100404. Sinitsyn NA, 2008, J PHYS-CONDENS MAT, V20, DOI 10.1088/0953-8984/20/02/023201. SMIT J, 1958, PHYSICA, V24, P39, DOI 10.1016/S0031-8914(58)93541-9. SMIT J, 1955, PHYSICA, V21, P877, DOI 10.1016/S0031-8914(55)92596-9. SMRCKA L, 1977, J PHYS C SOLID STATE, V10, P2153, DOI 10.1088/0022-3719/10/12/021. Solovyev IV, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.174406. SOLOVYEV IV, 1991, PHYS REV B, V43, P14414, DOI 10.1103/PhysRevB.43.14414. Strange P., 1998, RELATIVISTIC QUANTUM. STREDA P, 1982, J PHYS C SOLID STATE, V15, pL717, DOI 10.1088/0022-3719/15/22/005. Tung JC, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/3/033014. Tung JC, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.024435. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.174430. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.014405. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614. VELICKY B, 1968, PHYS REV, V175, P747, DOI 10.1103/PhysRev.175.747. Vidal EV, 2011, APPL PHYS LETT, V99, DOI 10.1063/1.3644157. Wang XJ, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.195109. WILLIAMS AR, 1982, PHYS REV B, V26, P5433, DOI 10.1103/PhysRevB.26.5433. Xiao D, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.026603. Yao YG, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.037204. Ye L, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.220403. Zabloudil J., 2005, ELECT SCATTERING SOL. ZELLER R, 1982, SOLID STATE COMMUN, V44, P993, DOI 10.1016/0038-1098(82)90320-9.}",
	number-of-cited-references = "{56}",
	times-cited = "{11}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{8}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{AC2XR}",
	unique-id = "{ISI:000332380100006}"
}

Michal Valiska, Jiri Pospisil, Jan Prokleska, Martin Divis, Alexandra Rudajevova, Ilja Turek and Vladimir Sechovsky. Influence of symmetry on Sm magnetism studied on SmIr2Si2 polymorphs. JOURNAL OF ALLOYS AND COMPOUNDS 574:459-466, 2013. BibTeX

@article{ ISI:000321749600075,
	author = "Valiska, Michal and Pospisil, Jiri and Prokleska, Jan and Divis, Martin and Rudajevova, Alexandra and Turek, Ilja and Sechovsky, Vladimir",
	title = "{Influence of symmetry on Sm magnetism studied on SmIr2Si2 polymorphs}",
	journal = "{JOURNAL OF ALLOYS AND COMPOUNDS}",
	year = "{2013}",
	volume = "{574}",
	pages = "{459-466}",
	month = "{OCT 15}",
	abstract = "{Polycrystalline samples of SmIr2Si2 formed at room temperature both the low temperature phase (LTP) and the metastable high temperature phase (HTP), respectively, depending on the heat treatment. The samples were studied by X-ray powder diffraction, DTA, specific-heat and magnetization measurements with respect to temperature and magnetic field. The first order LTP <-> HTP polymorphic phase transition has been determined showing the huge temperature hysteresis of 264 degrees C caused by the high energy barrier due to the change of stacking of the Sm, Ir and Si basal plane sheets within the transition. Both polymorphs show indications of antiferromagnetic order at low temperatures. The considerably different magnetic phase transitions determined for the LTP and HTP confirm the strong influence of crystal structure symmetry on magnetism in the two polymorphs. The magnetism in SmIr2Si2 exhibits typical features caused by the specific behavior of Sm3+ ion characterized by energy nearness of the ground state and first excited state and crystal field influence. The interpretation of experimental results is corroborated by results of ab initio electronic structure calculations. (C) 2013 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE SA}",
	address = "{PO BOX 564, 1001 LAUSANNE, SWITZERLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Valiska, M (Reprint Author), Charles Univ Prague, DCMP, Fac Math \& Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic. Valiska, Michal; Pospisil, Jiri; Prokleska, Jan; Divis, Martin; Rudajevova, Alexandra; Turek, Ilja; Sechovsky, Vladimir, Charles Univ Prague, DCMP, Fac Math \& Phys, CZ-12116 Prague 2, Czech Republic.}",
	doi = "{10.1016/j.jallcom.2013.05.047}",
	issn = "{0925-8388}",
	eissn = "{1873-4669}",
	keywords = "{SmIr2Si2; Polymorphism; DTA; Hysteresis; Crystal field; DFT}",
	keywords-plus = "{SAMARIUM INTERMETALLIC COMPOUNDS; TERNARY SILICIDES; HYPERFINE FIELD; KNIGHT SHIFT; MOMENT; DYCU2; SIGN}",
	research-areas = "{Chemistry; Materials Science; Metallurgy \& Metallurgical Engineering}",
	web-of-science-categories = "{Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy \& Metallurgical Engineering}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Sechovsky, Vladimir/A-5256-2008 Pospisil, Jiri/M-9882-2016}",
	orcid-numbers = "{Sechovsky, Vladimir/0000-0003-1298-2120 }",
	funding-acknowledgement = "{Czech Science Foundation {[}GACR P204/12/0692]; program of Czech Research Infrastructures {[}LM2011025]}",
	funding-text = "{This work was supported by the Czech Science Foundation (Project GACR P204/12/0692). Experiments were performed in MLTL (http://mltl.eu/), which is supported within the program of Czech Research Infrastructures (Project No. LM2011025).}",
	cited-references = "{ALLEVATO CE, 1993, J ALLOY COMPD, V200, P99, DOI 10.1016/0925-8388(93)90478-6. BAN Z, 1965, ACTA CRYSTALLOGR, V18, P594, DOI 10.1107/S0365110X6500141X. BRAUN HF, 1983, PHYS REV B, V28, P1389, DOI 10.1103/PhysRevB.28.1389. BUSCHOW KHJ, 1973, PHYS REV B, V8, P5134, DOI 10.1103/PhysRevB.8.5134. DEWIJN HW, 1973, PHYS REV B, V7, P524, DOI 10.1103/PhysRevB.7.524. Dieke G. H., 1968, SPECTRA ENERGY LEVEL. Divis A, 2005, J ALLOY COMPD, V403, P29, DOI 10.1016/j.jallcom.2005.04.192. El-Hagary M, 2000, PHYSICA B, V284, P1489, DOI 10.1016/S0921-4526(99)02680-0. HASHIMOTO Y, 1994, PHYS REV LETT, V72, P1922, DOI 10.1103/PhysRevLett.72.1922. HIEBL K, 1983, SOLID STATE COMMUN, V48, P211, DOI 10.1016/0038-1098(83)90272-7. HIEBL K, 1983, J MAGN MAGN MATER, V37, P287, DOI 10.1016/0304-8853(83)90058-6. HOFFMANN R, 1985, J PHYS CHEM-US, V89, P4175, DOI 10.1021/j100266a007. HUTCHING.MT, 1965, P PHYS SOC LOND, V85, P397, DOI 10.1088/0370-1328/85/2/123. MAEZAWA K, 1989, PHYSICA B, V155, P276, DOI 10.1016/0921-4526(89)90512-7. MALIK SK, 1974, PHYS REV B, V10, P283, DOI 10.1103/PhysRevB.10.283. MALIK SK, 1975, PHYS REV B, V12, P1098, DOI 10.1103/PhysRevB.12.1098. MALIK SK, 1971, PHYS LETT A, VA 34, P67, DOI 10.1016/0375-9601(71)91003-6. Mihalik M, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.134414. Mihalik M, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.174431. PERDEW JP, 1992, PHYS REV B, V45, P13244, DOI 10.1103/PhysRevB.45.13244. Pospisil J, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.024413. Prchal J, 2012, J APPL PHYS, V111, DOI 10.1063/1.3679460. Prokleska J, 2006, J ALLOY COMPD, V408, P359, DOI 10.1016/j.jallcom.2005.04.182. RIETVELD HM, 1969, J APPL CRYSTALLOGR, V2, P65, DOI 10.1107/S0021889869006558. RODRIGUEZCARVAJAL J, 1993, PHYSICA B, V192, P55, DOI 10.1016/0921-4526(93)90108-I. Rotter M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.134405. Schwarz K, 2002, COMPUT PHYS COMMUN, V147, P71, DOI 10.1016/S0010-4655(02)00206-0. Shein IR, 2011, PHYSICA B, V406, P3525, DOI 10.1016/j.physb.2011.04.046. STEVENS KWH, 1952, P PHYS SOC LOND A, V65, P209, DOI 10.1088/0370-1298/65/3/308. STEWART AM, 1972, PHYS REV B, V6, P1985, DOI 10.1103/PhysRevB.6.1985. STEWART AM, 1972, PHYS STATUS SOLIDI B, V52, pK1, DOI 10.1002/pssb.2220520138. STEWART AM, 1973, PHYS REV B, V8, P2214, DOI 10.1103/PhysRevB.8.2214. Stewart A.M., 1972, J PHYS, V3. Svoboda P, 1999, EUROPHYS LETT, V48, P410, DOI 10.1209/epl/i1999-00498-4. Van Vleck JH, 1952, THEORY ELECT MAGNETI. Vejpravova J, 2003, PHYSICA B, V329, P504, DOI 10.1016/S0921-4526(02)02165-8. Wang XZ, 1985, REV CHIM MINER, V22, P711. WHITE JA, 1961, PHYS REV LETT, V6, P412, DOI 10.1103/PhysRevLett.6.412.}",
	number-of-cited-references = "{38}",
	times-cited = "{4}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{36}",
	journal-iso = "{J. Alloy. Compd.}",
	doc-delivery-number = "{182NG}",
	unique-id = "{ISI:000321749600075}"
}

J Kudrnovsky, V Drchal and I Turek. Anomalous Hall effect in stoichiometric Heusler alloys with native disorder: A first-principles study. PHYSICAL REVIEW B 88(1), 2013. BibTeX

@article{ ISI:000322083400004,
	author = "Kudrnovsky, J. and Drchal, V. and Turek, I.",
	title = "{Anomalous Hall effect in stoichiometric Heusler alloys with native disorder: A first-principles study}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2013}",
	volume = "{88}",
	number = "{1}",
	month = "{JUL 19}",
	abstract = "{We estimate the anomalous Hall effect of selected Heusler alloys from first principles. An emphasis is put on the effect of the native disorder which is often present in the stoichiometric samples. Such disorder can strongly influence both the magnetic and transport properties of these alloys. We employ a recently developed fully relativistic Kubo-Streda approach adapted to disordered multisublattice systems in which the chemical disorder is described in terms of the coherent potential approximation. As case studies we choose half-metallic Heusler alloys Co2CrAl and Co2MnAl, as well as the spin gapless semiconductor alloy Mn2CoAl for which experimental and theoretical studies appeared recently. We demonstrate that proper inclusion of disorder significantly improves agreement between the experiment and theory.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.88.014422}",
	article-number = "{014422}",
	issn = "{1098-0121}",
	keywords-plus = "{ENERGIES}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/11/1228]}",
	funding-text = "{The authors acknowledge support of the Czech Science Foundation (P204/11/1228).}",
	cited-references = "{Acet M, 2002, J APPL PHYS, V92, P3867, DOI 10.1063/1.1504498. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Ducastelle F., 1991, ORDER PHASE STABILIT. Graf T, 2011, PROG SOLID STATE CH, V39, P1, DOI 10.1016/j.progsolidstchem.2011.02.001. Hoshino T, 2010, J ALLOY COMPD, V504, pS531, DOI 10.1016/j.jallcom.2010.02.056. Husmann A, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.172417. Jungwirth T, 2002, APPL PHYS LETT, V81, P4029, DOI 10.1063/1.1523160. Kudrnovsky J, 2013, J SUPERCOND NOV MAGN, V26, P1749, DOI 10.1007/s10948-012-2080-5. Kudrnovsky J, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.214436. Kubler J, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.024414. Kubler J, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.012405. Liu GD, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.014424. Lowitzer S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.266604. Miura Y, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.144413. Nagaosa N, 2010, REV MOD PHYS, V82, P1539, DOI 10.1103/RevModPhys.82.1539. Ouardi S, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.100401. Ozdogan K, 2008, J APPL PHYS, V103, DOI 10.1063/1.2831224. Skaftouros S, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.024420. Skaftouros S, 2013, APPL PHYS LETT, V102, DOI 10.1063/1.4775599. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.014405. Turek I, 2008, PHILOS MAG, V88, P2787, DOI 10.1080/14786430802232553. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. Kainura R., 2008, J APPL PHYS, V103. Vidal EV, 2011, APPL PHYS LETT, V99, DOI 10.1063/1.3644157. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Weischenberg J, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.106601.}",
	number-of-cited-references = "{27}",
	times-cited = "{16}}, Usage-Count-(Last-180-days) = {{4}",
	usage-count-since-2013 = "{43}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{186ZB}",
	unique-id = "{ISI:000322083400004}"
}

I Turek, J Kudrnovsky and K Carva. Anisotropy of Magnetic Moments and Energy in Tetragonal Fe-Co Alloys from First Principles. JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM 26(5, SI):1581-1584, Květen 2013. BibTeX

@article{ ISI:000323906600031,
	author = "Turek, I. and Kudrnovsky, J. and Carva, K.",
	title = "{Anisotropy of Magnetic Moments and Energy in Tetragonal Fe-Co Alloys from First Principles}",
	journal = "{JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM}",
	year = "{2013}",
	volume = "{26}",
	number = "{5, SI}",
	pages = "{1581-1584}",
	month = "{MAY}",
	abstract = "{Magnetic anisotropies of random body-centered tetragonal Fe-Co alloys are studied by means of relativistic ab initio electronic structure calculations. Special attention is paid to the values and trends of magnetic moments and magnetic anisotropy energies as well as to their sensitivity to current approximations employed. It is found that the high uniaxial anisotropy energy K-u, predicted for alloys with 60 \% of Co by several authors, is reduced significantly in the coherent potential approximation describing the chemical disorder in real alloys. On the other hand, the four-component Dirac formalism leads to enhanced values of the K-u as compared to a simple perturbative treatment of the spin-orbit interaction. Similar behavior is found for the orbital magnetic moments, the values of which are systematically smaller than the measured ones irrespective of the theoretical approach used.}",
	publisher = "{SPRINGER}",
	address = "{233 SPRING ST, NEW YORK, NY 10013 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Brno, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, Brno, Czech Republic. Kudrnovsky, J., Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. Carva, K., Charles Univ Prague, Dept Condensed Matter Phys, Prague, Czech Republic.}",
	doi = "{10.1007/s10948-012-2050-y}",
	issn = "{1557-1939}",
	keywords = "{Density functional theory; Magnetic anisotropy; Fe-Co alloys}",
	keywords-plus = "{SPIN}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/11/1228]}",
	funding-text = "{This work was financially supported by the Czech Science Foundation (Grant No. P204/11/1228).}",
	cited-references = "{ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. BRUNO P, 1989, PHYS REV B, V39, P865, DOI 10.1103/PhysRevB.39.865. Burkert T, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.027203. Ebert H, 2000, LECT NOTES PHYS, V535, P191. Neise C, 2011, PHYS STATUS SOLIDI B, V248, P2398, DOI 10.1002/pssb.201147100. Shick AB, 1996, PHYS REV B, V54, P1610, DOI 10.1103/PhysRevB.54.1610. SODERLIND P, 1992, J MAGN MAGN MATER, V104, P2037, DOI 10.1016/0304-8853(92)91658-G. TUREK I, 1994, PHYS REV B, V49, P3352, DOI 10.1103/PhysRevB.49.3352. Turek I, 2008, PHILOS MAG, V88, P2787, DOI 10.1080/14786430802232553. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Yildiz F, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.064415. Yildiz F, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.037205.}",
	number-of-cited-references = "{13}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{3}",
	usage-count-since-2013 = "{11}",
	journal-iso = "{J. Supercond. Nov. Magn}",
	doc-delivery-number = "{211KS}",
	unique-id = "{ISI:000323906600031}"
}

Y Jiraskova, J Bursik and I Turek. Nanostructure, Composition, and Magnetic Behavior of Mechanically Alloyed Fe-Mo. JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM 26(5, SI):1717-1721, Květen 2013. BibTeX

@article{ ISI:000323906600058,
	author = "Jiraskova, Y. and Bursik, J. and Turek, I.",
	title = "{Nanostructure, Composition, and Magnetic Behavior of Mechanically Alloyed Fe-Mo}",
	journal = "{JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM}",
	year = "{2013}",
	volume = "{26}",
	number = "{5, SI}",
	pages = "{1717-1721}",
	month = "{MAY}",
	abstract = "{Iron and molybdenum powder mixture exposed to stepwise mechanical alloying in air and in nitrogen is studied by X-ray diffraction, Mossbauer spectrometry, electron microscopy, magnetic measurements, and differential thermal analysis. The Mossbauer spectra are interpreted in terms of various contributions. The main contribution is associated with the FeMo nanograin core, which is similar to the bcc-FeMo bulk alloy of the same composition, i.e., a ferromagnetic solid solution of Mo in Fe. The increasing milling time contributes to a decrease in grain size. It results in a decrease of the volume fraction of the grain cores and simultaneously to an increase in a volume fraction of other contributions of highly defected surface zones and very close surface layers influenced by the milling atmosphere. The Rietveld interpretation of diffraction patterns, the scanning, and transmission electron microscopy completed by the EDX analysis and magnetic measurements are in good agreement with the Mossbauer spectra interpretation.}",
	publisher = "{SPRINGER}",
	address = "{233 SPRING ST, NEW YORK, NY 10013 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Jiraskova, Y (Reprint Author), Inst Phys Mat AS CR, CEITEC IPM, Brno 61662, Czech Republic. Jiraskova, Y., Inst Phys Mat AS CR, CEITEC IPM, Brno 61662, Czech Republic. Bursik, J.; Turek, I., Inst Phys Mat AS CR, Brno 61662, Czech Republic.}",
	doi = "{10.1007/s10948-012-2049-4}",
	issn = "{1557-1939}",
	keywords = "{Nanostructured material; Mechanical alloying; Magnetic properties; Grain core; Defects}",
	keywords-plus = "{POWDERS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bursik, Jiri/B-8684-2013 Jiraskova, Yvonna/E-3682-2012 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Bursik, Jiri/0000-0002-6749-9788 }",
	funding-acknowledgement = "{Czech Science Foundation {[}P108/11/1350]}",
	funding-text = "{The authors thank M. Hapla and Dr. A. Kroupa for magnetic and DTA measurements and the Czech Science Foundation (P108/11/1350) for financial support.}",
	cited-references = "{CHIEN CL, 1986, J MAGN MAGN MATER, V54-7, P291, DOI 10.1016/0304-8853(86)90593-7. D'Incau M, 2007, J MATER RES, V22, P1744, DOI 10.1557/JMR.2007.0224. FUCHS A, 1965, ACTA CRYSTALLOGR, V19, P488, DOI 10.1107/S0365110X65003742. Jartych E, 2003, J MAGN MAGN MATER, V265, P176, DOI 10.1016/S0304-8853(03)00263-4. Jartych E, 2002, J ALLOY COMPD, V337, P69, DOI 10.1016/S0925-8388(01)01959-4. Jiraskova Y, 2009, J ALLOY COMPD, V477, P55, DOI 10.1016/j.jallcom.2008.11.006. Moumeni H, 2006, J ALLOY COMPD, V419, P140, DOI 10.1016/j.jallcom.2006.03.040. Otmane F, 2011, DEFECT DIFFUS FORUM, V312-315, P743, DOI 10.4028/www.scientific.net/DDF.312-315.743. Suryanarayana C, 2001, PROG MATER SCI, V46, P1, DOI 10.1016/S0079-6425(99)00010-9. Turek I., 1997, ELECT STRUCTURE DISO. Young R.A., 1993, RIETVELD METOD. Zak T, 2006, SURF INTERFACE ANAL, V38, P710, DOI 10.1002/sia.2285.}",
	number-of-cited-references = "{12}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{J. Supercond. Nov. Magn}",
	doc-delivery-number = "{211KS}",
	unique-id = "{ISI:000323906600058}"
}

J Kudrnovsky, V Drchal and I Turek. Magnetotransport in Pd-Rich PdFe Alloys. JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM 26(5, SI):1749-1752, Květen 2013. BibTeX

@article{ ISI:000323906600064,
	author = "Kudrnovsky, J. and Drchal, V. and Turek, I.",
	title = "{Magnetotransport in Pd-Rich PdFe Alloys}",
	journal = "{JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM}",
	year = "{2013}",
	volume = "{26}",
	number = "{5, SI}",
	pages = "{1749-1752}",
	month = "{MAY}",
	abstract = "{The transport properties of Pd-rich PdFe alloys are investigated as a function of the atomic and magnetic orders on the L2(1) (Cu3Au) lattice. The residual resistivity, anisotropic magnetoresistance (AMR), and anomalous Hall effect are calculated from first-principles as a function of the atomic order. The calculations are based on the relativistic generalization of the transport Kubo-Greenwood approach as formulated in the framework of the first principles TB-LMTO method and Coherent Potential Approximation (CPA). The effect of the thermal magnetic disorder on the resistivity and AMR has been also studied using the disordered local moment approach based on the CPA. Our results are in an overall good agreement with available experimental data.}",
	publisher = "{SPRINGER}",
	address = "{233 SPRING ST, NEW YORK, NY 10013 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Inst Phys AS CR, Prague 18221 8, Czech Republic. Kudrnovsky, J.; Drchal, V., Inst Phys AS CR, Prague 18221 8, Czech Republic. Turek, I., Inst Phys Mat AS CR, Brno 61662, Czech Republic.}",
	doi = "{10.1007/s10948-012-2080-5}",
	issn = "{1557-1939}",
	keywords = "{Magnetic structure; Ab initio; Effective Hamiltonian}",
	keywords-plus = "{METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/11/1228]}",
	funding-text = "{Authors acknowledge the financial support from the Czech Science Foundation (P204/11/1228).}",
	cited-references = "{Banhart J, 2002, EUROPHYS LETT, V58, P264, DOI 10.1209/epl/i2002-00632-4. FISHER ME, 1968, PHYS REV LETT, V20, P665, DOI 10.1103/PhysRevLett.20.665. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HSU Y, 1979, J APPL PHYS, V50, P1907, DOI 10.1063/1.327160. KASUYA T, 1956, PROG THEOR PHYS, V16, P58, DOI 10.1143/PTP.16.58. Kudrnovsky J, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.214436. Lowitzer S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.266604. Naito T, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.195111. Rossiter R. L., 1987, ELECT RESISTIVITY ME. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.014405. Wysocki AL, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.224423. Ziman J.M., 1960, ELECT PHONONS.}",
	number-of-cited-references = "{12}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{J. Supercond. Nov. Magn}",
	doc-delivery-number = "{211KS}",
	unique-id = "{ISI:000323906600064}"
}

V Drchal, J Kudrnovsky and I Turek. Effective Magnetic Hamiltonians. JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM 26(5, SI):1997-2000, Květen 2013. BibTeX

@article{ ISI:000323906600107,
	author = "Drchal, V. and Kudrnovsky, J. and Turek, I.",
	title = "{Effective Magnetic Hamiltonians}",
	journal = "{JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM}",
	year = "{2013}",
	volume = "{26}",
	number = "{5, SI}",
	pages = "{1997-2000}",
	month = "{MAY}",
	abstract = "{Based on the first-principles electronic-structure calculations, we construct the effective magnetic Hamiltonians that can be used to search for the ground state of solids and nanostructures. Moreover, using the methods of statistical mechanics, one can study the magnetic properties at T > 0 such as the magnetic structure as a function of temperature, magnon spectra, the Curie/Neel temperature, etc. The present approach is highly flexible and it makes possible to study magnetic structure of complex systems with the accuracy of ab initio methods. As an illustration, we show how the magnetic structure of a magnetic monolayer (Fe) on a non-magnetic substrate (Ir(001)) can be determined.}",
	publisher = "{SPRINGER}",
	address = "{233 SPRING ST, NEW YORK, NY 10013 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Drchal, V (Reprint Author), Inst Phys AS CR, Na Slovance 2, Prague 18221 2, Czech Republic. Drchal, V.; Kudrnovsky, J., Inst Phys AS CR, Prague 18221 2, Czech Republic. Turek, I., Charles Univ Prague, Dept Condensed Matter Phys, Prague 12116 2, Czech Republic.}",
	doi = "{10.1007/s10948-012-2082-3}",
	issn = "{1557-1939}",
	keywords = "{Magnetic structure; Ab initio; Effective Hamiltonian}",
	keywords-plus = "{EXCHANGE INTERACTIONS; SPIN-WAVES}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	funding-acknowledgement = "{Czech Science Foundation {[}202/09/0775]}",
	funding-text = "{The authors thank Czech Science Foundation (Project 202/09/0775) for financial support.}",
	cited-references = "{Al-Zubi A, 2011, PHYS STATUS SOLIDI B, V248, P2242, DOI 10.1002/pssb.201147090. Deak L., 2011, PHYS REV B, V84. DEDERICHS PH, 1984, PHYS REV LETT, V53, P2512, DOI 10.1103/PhysRevLett.53.2512. Kudrnovsky J, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.064405. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Martin V., 2007, PHYS REV B, V76. SCHWARZ K, 1984, J PHYS F MET PHYS, V14, pL129, DOI 10.1088/0305-4608/14/7/008. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Udvardi L, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.104436.}",
	number-of-cited-references = "{9}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{J. Supercond. Nov. Magn}",
	doc-delivery-number = "{211KS}",
	unique-id = "{ISI:000323906600107}"
}

I Turek, J Kudrnovsky and K Carva. Magnetic anisotropy energy of disordered tetragonal Fe-Co systems from ab initio alloy theory. PHYSICAL REVIEW B 86(17), 2012. BibTeX

@article{ ISI:000311714600004,
	author = "Turek, I. and Kudrnovsky, J. and Carva, K.",
	title = "{Magnetic anisotropy energy of disordered tetragonal Fe-Co systems from ab initio alloy theory}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2012}",
	volume = "{86}",
	number = "{17}",
	month = "{NOV 30}",
	abstract = "{We present results of systematic fully relativistic first-principles calculations of the uniaxial magnetic anisotropy energy (MAE) of a disordered and partially ordered tetragonal Fe-Co alloy using the coherent potential approximation (CPA). This alloy has recently become a promising system for thin ferromagnetic films with a perpendicular magnetic anisotropy. We find that existing theoretical approaches to homogeneous random bulk Fe-Co alloys, based on a simple virtual crystal approximation (VCA), overestimate the maximum MAE values obtained in the CPA by a factor of 4. This pronounced difference is ascribed to the strong disorder in the minority spin channel of real alloys, which is neglected in the VCA and which leads to a broadening of the d-like eigenstates at the Fermi energy and to the reduction of the MAE. The ordered Fe-Co alloys with a maximum L1(0)-like atomic long-range order can exhibit high values of the MAE, which, however, get dramatically reduced by small perturbations of the perfect order.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Kudrnovsky, J., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Carva, K., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CZ-12116 Prague 2, Czech Republic.}",
	doi = "{10.1103/PhysRevB.86.174430}",
	article-number = "{174430}",
	issn = "{1098-0121}",
	keywords-plus = "{TIN-ORBITAL METHOD; ELECTRONIC-STRUCTURE; MAGNETOCRYSTALLINE ANISOTROPY; NI ALLOYS; SPIN; MOMENT; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/11/1228]}",
	funding-text = "{The work was supported by the Czech Science Foundation (Grant No. P204/11/1228).}",
	cited-references = "{Aas CJ, 2011, APPL PHYS LETT, V99, DOI 10.1063/1.3644478. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Andersson G, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.037205. BRUNO P, 1989, PHYS REV B, V39, P865, DOI 10.1103/PhysRevB.39.865. Burkert T, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.104426. Burkert T, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.027203. DAALDEROP GHO, 1992, PHYS REV LETT, V68, P682, DOI 10.1103/PhysRevLett.68.682. De la Pena-Seaman O, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.224508. Ebert H, 2000, LECT NOTES PHYS, V535, P191. FAULKNER JS, 1982, PROG MATER SCI, V27, P1, DOI 10.1016/0079-6425(82)90005-6. Ferriani P, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.187203. Gonis A., 2000, THEORETICAL MAT SCI. Heine V., 1960, GROUP THEORY QUANTUM. KOELLING DD, 1977, J PHYS C SOLID STATE, V10, P3107, DOI 10.1088/0022-3719/10/16/019. Kojima T, 2012, JPN J APPL PHYS, V51, DOI 10.1143/JJAP.51.010204. Kota Y, 2012, APPL PHYS EXPRESS, V5, DOI 10.1143/APEX.5.113002. Kota Y, 2012, J APPL PHYS, V111, DOI 10.1063/1.3671436. Kota Y, 2009, J APPL PHYS, V105, DOI 10.1063/1.3073955. Kubler J., 2000, THEORY ITINERANT ELE. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Luo F, 2007, APPL PHYS LETT, V91, DOI 10.1063/1.2821370. Neise C, 2011, PHYS STATUS SOLIDI B, V248, P2398, DOI 10.1002/pssb.201147100. Richter M, 1998, J PHYS D APPL PHYS, V31, P1017, DOI 10.1088/0022-3727/31/9/002. SCHWARZ K, 1984, J PHYS F MET PHYS, V14, P2659, DOI 10.1088/0305-4608/14/11/021. Shick AB, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.172407. Shick AB, 1996, PHYS REV B, V54, P1610, DOI 10.1103/PhysRevB.54.1610. SODERLIND P, 1992, PHYS REV B, V45, P12911, DOI 10.1103/PhysRevB.45.12911. SODERLIND P, 1992, J MAGN MAGN MATER, V104, P2037, DOI 10.1016/0304-8853(92)91658-G. SOLOVYEV IV, 1991, PHYS REV B, V43, P14414, DOI 10.1103/PhysRevB.43.14414. Staunton JB, 2004, J PHYS-CONDENS MAT, V16, pS5623, DOI 10.1088/0953-8984/16/48/019. Stiles MD, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.104430. TRYGG J, 1995, PHYS REV LETT, V75, P2871, DOI 10.1103/PhysRevLett.75.2871. TUREK I, 1994, PHYS REV B, V49, P3352, DOI 10.1103/PhysRevB.49.3352. Turek I., 1997, ELECT STRUCTURE DISO. Ujfalussy B, 1996, PHYS REV LETT, V77, P1805, DOI 10.1103/PhysRevLett.77.1805. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Warnicke P, 2007, J PHYS-CONDENS MAT, V19, DOI 10.1088/0953-8984/19/22/226218. Weinberger P., 1990, ELECT SCATTERING THE. Wijn H. P. J., 1991, MAGNETIC PROPERTIES. Yildiz F, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.064415. Yildiz F, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.037205.}",
	number-of-cited-references = "{41}",
	times-cited = "{27}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{32}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{045RN}",
	unique-id = "{ISI:000311714600004}"
}

J Kudrnovsky, V Drchal, I Turek, S Khmelevskyi, J K Glasbrenner and K D Belashchenko. Spin-disorder resistivity of ferromagnetic metals from first principles: The disordered-local-moment approach. PHYSICAL REVIEW B 86(14), 2012. BibTeX

@article{ ISI:000310435500006,
	author = "Kudrnovsky, J. and Drchal, V. and Turek, I. and Khmelevskyi, S. and Glasbrenner, J. K. and Belashchenko, K. D.",
	title = "{Spin-disorder resistivity of ferromagnetic metals from first principles: The disordered-local-moment approach}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2012}",
	volume = "{86}",
	number = "{14}",
	month = "{OCT 31}",
	abstract = "{The paramagnetic spin-disorder resistivity (SDR) of transition-metal ferromagnets Fe, Co, Ni, ordered transition metal alloys Ni3Mn and Fe3Si as well as Ni2MnX (X = In, Sn, Sb) Heusler alloys is determined from first principles. SDR is evaluated similar to the residual resistivity by using the disordered local moment (DLM) model combined with the Kubo-Greenwood linear response calculation. The electronic structure is determined within the tight-binding linear muffin-tin orbital method and the coherent potential approximation (CPA) applied to the DLM state. We also estimate the temperature dependence of the resistivity below the Curie temperature using a simple model. The results agree well with the supercell Landauer-Buttiker calculations and, generally, with experimental data. For the Ni2MnSb Heusler alloy it is necessary to include substitutional disorder of B2-type to explain the experimental data.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Turek, I., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CZ-12116 Prague 2, Czech Republic. Khmelevskyi, S., Vienna Univ Technol, Inst Appl Phys, CMS, A-1020 Vienna, Austria. Glasbrenner, J. K.; Belashchenko, K. D., Univ Nebraska, Nebraska Ctr Mat \& Nanosci, Lincoln, NE 68588 USA. Glasbrenner, J. K.; Belashchenko, K. D., Univ Nebraska, Dept Phys \& Astron, Lincoln, NE 68588 USA.}",
	doi = "{10.1103/PhysRevB.86.144423}",
	article-number = "{144423}",
	issn = "{1098-0121}",
	keywords-plus = "{ELECTRICAL-RESISTIVITY; HEUSLER ALLOYS; TEMPERATURE; FE; NI; CO; DEPENDENCE; ANOMALIES; SYSTEMS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014 Belashchenko, Kirill/A-9744-2008 Glasbrenner, James/K-5614-2015 }",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417 Belashchenko, Kirill/0000-0002-8518-1490 Glasbrenner, James/0000-0003-2198-2309 Khmelevskyi, Sergii/0000-0001-5630-7835}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/11/1228]; NSF {[}DMR-1005642]; Nebraska MRSEC {[}DMR-0820521]; Research Corporation through the Cottrell Scholar Award; Austrian FWF {[}SFB ViCoM F4109-N13]}",
	funding-text = "{J.K., V.D., and I.T. acknowledge support of the Czech Science Foundation (Grant No. P204/11/1228). The work at UNL was supported by the NSF through Grant No. DMR-1005642 and Nebraska MRSEC (Grant No. DMR-0820521). K. D. B. acknowledges financial support from the Research Corporation through the Cottrell Scholar Award. S.Kh. acknowledges the Austrian FWF (SFB ViCoM F4109-N13) for financial support.}",
	cited-references = "{Acet M, 2002, J APPL PHYS, V92, P3867, DOI 10.1063/1.1504498. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Banhart J, 1997, PHYS REV B, V56, P10165, DOI 10.1103/PhysRevB.56.10165. Bass J., 1982, LANDOLT BORNSTEIN A, V15a, P1. Bose SK, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.174402. Buruzs A, 2008, PHILOS MAG, V88, P2615, DOI 10.1080/14786430802438200. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. COLES BR, 1958, ADV PHYS, V7, P40, DOI 10.1080/00018735800101167. DEGENNES PG, 1958, J PHYS CHEM SOLIDS, V4, P71, DOI 10.1016/0022-3697(58)90196-3. FERT A, 1976, J PHYS F MET PHYS, V6, P849, DOI 10.1088/0305-4608/6/5/025. FISHER ME, 1968, PHYS REV LETT, V20, P665, DOI 10.1103/PhysRevLett.20.665. Galanakis I, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3565246. Glasbrenner JK, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.214405. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HURD CM, 1986, J MAGN MAGN MATER, V61, P114, DOI 10.1016/0304-8853(86)90073-9. KASUYA T, 1956, PROG THEOR PHYS, V16, P58, DOI 10.1143/PTP.16.58. KASUYA T, 1959, PROG THEOR PHYS, V22, P227, DOI 10.1143/PTP.22.227. Kurtulus Y, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.014425. LEE PA, 1985, REV MOD PHYS, V57, P287, DOI 10.1103/RevModPhys.57.287. Maksimov E. G., 1997, Physics-Uspekhi, V40, P337, DOI 10.1070/PU1997v040n04ABEH000226. Moriya T., 1985, SPIN FLUCTUATIONS IT. MORUZZI VL, 1986, PHYS REV B, V34, P1784, DOI 10.1103/PhysRevB.34.1784. MOTT NF, 1964, ADV PHYS, V13, P325, DOI 10.1080/00018736400101041. NISHINO Y, 1993, PHYS REV B, V48, P13607, DOI 10.1103/PhysRevB.48.13607. Ozdogan K, 2008, J APPL PHYS, V103, DOI 10.1063/1.2831224. Rhee JY, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.094411. Rosengaard NM, 1997, PHYS REV B, V55, P14975, DOI 10.1103/PhysRevB.55.14975. Ruban AV, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.054402. SCHREINER WH, 1982, J PHYS CHEM SOLIDS, V43, P777, DOI 10.1016/0022-3697(82)90245-1. Staunton JB, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.144411. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.014405. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2000, LECT NOTES PHYS, V535, P349. Uhl M, 1996, PHYS REV LETT, V77, P334, DOI 10.1103/PhysRevLett.77.334. Ujfalussy B, 1999, J APPL PHYS, V85, P4824, DOI 10.1063/1.370494. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. Vonsovskii S. V., 1974, MAGNETISM. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WEISS RJ, 1959, J PHYS CHEM SOLIDS, V9, P302, DOI 10.1016/0022-3697(59)90107-6. Wysocki AL, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.224423. Wysocki AL, 2007, J APPL PHYS, V101, DOI 10.1063/1.2670472. Wysocki AL, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.184419. Ziman J.M., 1960, ELECT PHONONS.}",
	number-of-cited-references = "{44}",
	times-cited = "{12}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{22}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{028PV}",
	unique-id = "{ISI:000310435500006}"
}

R Sykora and I Turek. Tunnelling anisotropic magnetoresistance of Fe/GaAs/Ag(001) junctions from first principles: effect of hybridized interface resonances. JOURNAL OF PHYSICS-CONDENSED MATTER 24(36), 2012. BibTeX

@article{ ISI:000308153300011,
	author = "Sykora, R. and Turek, I.",
	title = "{Tunnelling anisotropic magnetoresistance of Fe/GaAs/Ag(001) junctions from first principles: effect of hybridized interface resonances}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{2012}",
	volume = "{24}",
	number = "{36}",
	month = "{SEP 12}",
	abstract = "{Results of first-principles calculations of the Fe/GaAs/Ag(001) epitaxial tunnel junctions reveal that hybridization of interface resonances formed at both interfaces can enhance the tunnelling anisotropic magnetoresistance (TAMR) of the systems. This mechanism is manifested by a non-monotonic dependence of the TAMR effect on the thickness of the tunnel barrier, with a maximum for intermediate thicknesses. A detailed scan of k(parallel to)-resolved transmissions over the two-dimensional Brillouin zone proves an interplay between a few hybridization-induced hot spots and a contribution to the tunnelling from the vicinity of the (Gamma) over bar point. This interpretation is supported by calculated properties of a simple tight-binding model of the junction, which reproduce qualitatively most of the features of the first-principles theory.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Sykora, R (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Ke Karlovu 5, CZ-12116 Prague, Czech Republic. Sykora, R., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CZ-12116 Prague, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1088/0953-8984/24/36/365801}",
	article-number = "{365801}",
	issn = "{0953-8984}",
	eissn = "{1361-648X}",
	keywords-plus = "{SPIN; MULTILAYERS; ELECTRON}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/11/1228]}",
	funding-text = "{This work was supported financially by the Czech Science Foundation (grant No P204/11/1228).}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Bader SD, 2010, ANNU REV CONDEN MA P, V1, P71, DOI 10.1146/annurev-conmatphys-070909-104123. Belashchenko KD, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.140404. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Carva K, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.104432. Chantis AN, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.196603. Chantis AN, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.046601. CHIANG TC, 1980, PHYS REV B, V21, P3513, DOI 10.1103/PhysRevB.21.3513. Datta S., 1995, ELECT TRANSPORT MESO. Dederichs PH, 2002, J MAGN MAGN MATER, V240, P108, DOI 10.1016/S0304-8853(01)00728-4. Drchal V, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.214414. Ebert H, 2010, PSI K NEWSLETT, V97, P79. Gould C, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.117203. Heine V., 1960, GROUP THEORY QUANTUM. KOSTER GF, 1957, SOLID STATE PHYS, V5, P173, DOI 10.1016/S0081-1947(08)60103-4. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Manchon A, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.172403. Matos-Abiague A, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.155303. Miron IM, 2010, NAT MATER, V9, P230, DOI {[}10.1038/nmat2613, 10.1038/NMAT2613]. Moser J, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.056601. Park BG, 2011, NAT MATER, V10, P347, DOI {[}10.1038/nmat2983, 10.1038/NMAT2983]. Rose M.E., 1961, RELATIVISTIC ELECT T. Thompson SM, 2008, J PHYS D APPL PHYS, V41, DOI 10.1088/0022-3727/41/9/093001. Tsymbal EY, 2007, PROG MATER SCI, V52, P401, DOI 10.1016/j.pmatsci.2006.10.009. Tsymbal EY, 2012, HANDBOOK OF SPIN TRANSPORT AND MAGNETISM, P1. Turek I, 2008, PHILOS MAG, V88, P2787, DOI 10.1080/14786430802232553. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. Uemura T, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3561759. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Wunnicke O, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.064425. Xia K, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.064407.}",
	number-of-cited-references = "{32}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{12}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{997GS}",
	unique-id = "{ISI:000308153300011}"
}

Rudolf Sykora and Ilja Turek. Transport Properties of Fe/GaAs/Ag(001) System. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 12(9):7554-7557, Září 2012. BibTeX

@article{ ISI:000308856200109,
	author = "Sykora, Rudolf and Turek, Ilja",
	title = "{Transport Properties of Fe/GaAs/Ag(001) System}",
	journal = "{JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY}",
	year = "{2012}",
	volume = "{12}",
	number = "{9}",
	pages = "{7554-7557}",
	month = "{SEP}",
	abstract = "{We present results of ab initio transport calculations for epitaxial magnetic tunnel junctions Fe/GaAs/Ag(001). The electronic structure is calculated by means of the tight-binding linear muffin-tin orbital method and the ballistic conductances are evaluated within the Kubo-Landauer formalism which includes the effect of the spin-orbit interaction. Particular attention is paid to the dependence of the conductances on the orientation of magnetization direction of the Fe electrode with respect to the crystal lattice and on the thickness of the tunneling barrier. We have found that the in-plane tunneling anisotropic magnetoresistance (TAMR) exhibits a non-monotonic thickness dependence with a maximum around 7.5 nm of GaAs. This behavior is ascribed to a hybridization of interface resonances formed on both sides of the junction and manifested as hot spots in k(parallel to)-resolved conductances. For thicker GaAs barriers, the relative intensity of the hot spots is reduced on account of the contribution from a narrow central region of the two-dimensional Brillouin zone which leads to the final decrease of the TAMR effect.}",
	publisher = "{AMER SCIENTIFIC PUBLISHERS}",
	address = "{26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic. Turek, Ilja, Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic. Sykora, Rudolf, Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CR-12116 Prague, Czech Republic.}",
	doi = "{10.1166/jnn.2012.6556}",
	issn = "{1533-4880}",
	keywords = "{Tunnel Junctions; Spin-Orbit Effects; Anisotropic Magnetoresistance}",
	keywords-plus = "{STATES}",
	research-areas = "{Chemistry; Science \& Technology - Other Topics; Materials Science; Physics}",
	web-of-science-categories = "{Chemistry, Multidisciplinary; Nanoscience \& Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	funding-acknowledgement = "{Ministry of Education of the Czech Republic {[}MSM 0021620834]; Academy of Sciences of the Czech Republic {[}AV0Z 20410507]; Czech Science Foundation {[}P204/11/1228]}",
	funding-text = "{The work was supported financially by the Ministry of Education of the Czech Republic (MSM 0021620834), the Academy of Sciences of the Czech Republic (AV0Z 20410507), and the Czech Science Foundation (P204/11/1228).}",
	cited-references = "{Belashchenko KD, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.140404. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Carva K, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.104432. Chantis AN, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.196603. Chantis AN, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.046601. CHIANG TC, 1980, PHYS REV B, V21, P3513, DOI 10.1103/PhysRevB.21.3513. Dederichs PH, 2002, J MAGN MAGN MATER, V240, P108, DOI 10.1016/S0304-8853(01)00728-4. Ebert H., 2010, NEWSLETTER PSIKAPPA, V97, P79. Gould C, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.117203. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Matos-Abiague A, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.155303. Moser J, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.056601. Thompson SM, 2008, J PHYS D APPL PHYS, V41, DOI 10.1088/0022-3727/41/9/093001. Tsymbal EY, 2007, PROG MATER SCI, V52, P401, DOI 10.1016/j.pmatsci.2006.10.009. Turek I., 2006, Advances in Science and Technology, V52, P1, DOI 10.4028/www.scientific.net/AST.52.1. Turek I, 2010, J PHYS CONF SER, V200, DOI 10.1088/1742-6596/200/5/052029. Turek I, 2008, PHILOS MAG, V88, P2787, DOI 10.1080/14786430802232553. Turek I., 1997, ELECT STRUCTURE DISO. Wunnicke O, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.064425.}",
	number-of-cited-references = "{19}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{10}",
	journal-iso = "{J. Nanosci. Nanotechnol.}",
	doc-delivery-number = "{006YR}",
	unique-id = "{ISI:000308856200109}"
}

I Turek, J Kudrnovsky and V Drchal. Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys. PHYSICAL REVIEW B 86(1), 2012. BibTeX

@article{ ISI:000306188400002,
	author = "Turek, I. and Kudrnovsky, J. and Drchal, V.",
	title = "{Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2012}",
	volume = "{86}",
	number = "{1}",
	month = "{JUL 6}",
	abstract = "{We present an ab initio theory of transport quantities of metallic ferromagnets developed in the framework of the fully relativistic tight-binding linear muffin-tin orbital method. The approach is based on the Kubo-Streda formula for the conductivity tensor, on the coherent potential approximation for random alloys, and on the concept of interatomic electron transport. The developed formalism is applied to pure 3d transition metals (Fe, Co, Ni) and to random Ni-based ferromagnetic alloys (Ni-Fe, Ni-Co, Ni-Mn). High values of the anisotropic magnetoresistance (AMR), found for Ni-rich alloys, are explained by a negligible disorder in the majority spin channel, while a change of the sign of the anomalous Hall effect (AHE) on alloying is interpreted as a band-filling effect without a direct relation to the high AMR. The influence of disorder on the AHE in concentrated alloys is investigated as well.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic.}",
	doi = "{10.1103/PhysRevB.86.014405}",
	article-number = "{014405}",
	issn = "{2469-9950}",
	eissn = "{2469-9969}",
	keywords-plus = "{COHERENT-POTENTIAL APPROXIMATION; TIN-ORBITAL METHOD; ELECTRONIC-STRUCTURE; RESISTIVITY ANISOTROPY; ELECTRICAL-RESISTIVITY; NICKEL-ALLOYS; NI-ALLOYS; TRANSPORT; BAND; SEMICONDUCTORS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/11/1228]}",
	funding-text = "{The authors acknowledge financial support by the Czech Science Foundation (Grant No. P204/11/1228).}",
	cited-references = "{AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. Banhart J, 1997, PHYS REV B, V56, P10165, DOI 10.1103/PhysRevB.56.10165. BANHART J, 1995, EUROPHYS LETT, V32, P517, DOI 10.1209/0295-5075/32/6/010. BERGER L, 1964, PHYSICA, V30, P1141, DOI 10.1016/0031-8914(64)90105-3. BUTLER WH, 1985, PHYS REV B, V31, P3260, DOI 10.1103/PhysRevB.31.3260. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Crepieux A, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.014416. DHEER PN, 1967, PHYS REV, V156, P637, DOI 10.1103/PhysRev.156.637. DORLEIJN JWF, 1975, J PHYS F MET PHYS, V5, P1543, DOI 10.1088/0305-4608/5/8/013. Ebert H, 1996, PHYS REV B, V54, P8479, DOI 10.1103/PhysRevB.54.8479. Fuh HR, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.144427. GREENWOOD DA, 1958, P PHYS SOC LOND, V71, P585, DOI 10.1088/0370-1328/71/4/306. Hall EH, 1881, PHILOS MAG, V12, P157. JAOUL O, 1977, J MAGN MAGN MATER, V5, P23, DOI 10.1016/0304-8853(77)90193-7. Jungwirth T, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.207208. Jungwirth T, 2006, REV MOD PHYS, V78, P809, DOI 10.1103/RevModPhys.78.809. Khmelevskyi S, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.012402. Kokado S, 2012, J PHYS SOC JPN, V81, DOI 10.1143/JPSJ.81.024705. KONDORSKII EI, 1964, SOV PHYS-SOL STATE, V6, P422. Kontani H, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.184416. Kota Y, 2009, J APPL PHYS, V105, DOI 10.1063/1.3073955. Kovalev AA, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.036601. Kudrnovsky J, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.214436. Kudrnovsky J, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.224422. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. LAVINE JM, 1961, PHYS REV, V123, P1273, DOI 10.1103/PhysRev.123.1273. Lowitzer S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.266604. Nagaosa N, 2010, REV MOD PHYS, V82, P1539, DOI 10.1103/RevModPhys.82.1539. Naito T, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.195111. Roman E, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.097203. Sato K, 2010, REV MOD PHYS, V82, P1633, DOI 10.1103/RevModPhys.82.1633. Shick AB, 1996, PHYS REV B, V54, P1610, DOI 10.1103/PhysRevB.54.1610. SMIT J, 1951, PHYSICA, V17, P612, DOI 10.1016/0031-8914(51)90117-6. SMIT J, 1955, PHYSICA, V21, P877, DOI 10.1016/S0031-8914(55)92596-9. SOLOVYEV IV, 1991, PHYS REV B, V43, P14414, DOI 10.1103/PhysRevB.43.14414. Starikov AA, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.236601. STREDA P, 1982, J PHYS C SOLID STATE, V15, pL717, DOI 10.1088/0022-3719/15/22/005. Streda P, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.045115. Thompson SM, 2008, J PHYS D APPL PHYS, V41, DOI 10.1088/0022-3727/41/9/093001. Thomson W, 1857, P R SOC LONDON, V8, P546, DOI DOI 10.1098/RSPL.1856.0144. Toth BG, 2010, EUR PHYS J B, V75, P167, DOI 10.1140/epjb/e2010-00132-4. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2010, J PHYS CONF SER, V200, DOI 10.1088/1742-6596/200/5/052029. Turek I, 2008, PHILOS MAG, V88, P2787, DOI 10.1080/14786430802232553. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614. Vernes A, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.134404. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Vyborny K, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.165204. Wang XJ, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.195109. Yao YG, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.037204. Zabloudil J., 2005, ELECT SCATTERING SOL. Zhang HB, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.024401.}",
	number-of-cited-references = "{57}",
	times-cited = "{30}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{17}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{971FF}",
	unique-id = "{ISI:000306188400002}"
}

J K Glasbrenner, K D Belashchenko, J Kudrnovsky, V Drchal, S Khmelevskyi and I Turek. First-principles study of spin-disorder resistivity of heavy rare-earth metals: Gd-Tm series. PHYSICAL REVIEW B 85(21), 2012. BibTeX

@article{ ISI:000304931000003,
	author = "Glasbrenner, J. K. and Belashchenko, K. D. and Kudrnovsky, J. and Drchal, V. and Khmelevskyi, S. and Turek, I.",
	title = "{First-principles study of spin-disorder resistivity of heavy rare-earth metals: Gd-Tm series}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2012}",
	volume = "{85}",
	number = "{21}",
	month = "{JUN 7}",
	abstract = "{Electrical resistivity of heavy rare-earth metals has a dominant contribution from thermal spin-disorder scattering. Here this spin-disorder resistivity is calculated for the Gd-Tm series of metals in the paramagnetic state. Calculations are performed within the tight-binding linear muffin-tin orbital method using two complementary methods: (1) averaging of the Landauer-Buttiker conductance of a supercell over random noncollinear spin-disorder configurations, and (2) linear response calculations with the spin-disordered state described in the coherent potential approximation. The agreement between these two methods is found to be excellent. The spin-disorder resistivity in the series follows an almost universal dependence on the exchange splitting. While the crystallographic anisotropy of the spin-disorder resistivity agrees well with experiment, its magnitude is significantly underestimated. These results suggest that the classical picture of slowly rotating self-consistent local moments is inadequate for rare-earth metals. A simple quantum correction improves agreement with experiment but does not fully account for the discrepancy, suggesting that more complicated scattering mechanisms may be important.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Glasbrenner, JK (Reprint Author), Univ Nebraska, Dept Phys \& Astron, Lincoln, NE 68588 USA. Glasbrenner, J. K.; Belashchenko, K. D., Univ Nebraska, Dept Phys \& Astron, Lincoln, NE 68588 USA. Glasbrenner, J. K.; Belashchenko, K. D., Univ Nebraska, Nebraska Ctr Mat \& Nanosci, Lincoln, NE 68588 USA. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Khmelevskyi, S., Vienna Univ Technol, Inst Appl Phys, CMS, A-1020 Vienna, Austria. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.85.214405}",
	article-number = "{214405}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{AB-INITIO THEORY; ELECTRICAL-RESISTIVITY; SINGLE-CRYSTALS; MAGNETIZATION; TEMPERATURE; GADOLINIUM; DYSPROSIUM; RESISTANCE; PRESSURE; ALLOYS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Belashchenko, Kirill/A-9744-2008 Glasbrenner, James/K-5614-2015 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Belashchenko, Kirill/0000-0002-8518-1490 Glasbrenner, James/0000-0003-2198-2309 Khmelevskyi, Sergii/0000-0001-5630-7835 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	funding-acknowledgement = "{NSF {[}DMR-1005642]; Nebraska MRSEC {[}DMR-0820521]; Research Corporation; Czech Science Foundation {[}P204/11/1228]; Austrian FWF (SFB ViCoM) {[}F4109-N13]}",
	funding-text = "{We thank A. L. Wysocki for useful discussions. The work at UNL was supported by the NSF through Grant No. DMR-1005642 and Nebraska MRSEC (Grant No. DMR-0820521), and completed utilizing the Holland Computing Center at the University of Nebraska. K. D. B. acknowledges financial support from the Research Corporation through the Cottrell Scholar Award. J.K., V. D., and I. T. thank the Czech Science Foundation (Grant No. P204/11/1228), and S. K. the Austrian FWF (SFB ViCoM F4109-N13), for financial support.}",
	cited-references = "{ALSTAD JK, 1961, PHYS REV, V123, P418, DOI 10.1103/PhysRev.123.418. ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. Baer Y., 1987, HDB PHYSICS CHEM RAR, V10, P1, DOI 10.1016/S0168-1273(87)10004-9. Blugel S, 2006, COMPUTATIONAL NANOSC, V31, P85. BROUT R, 1959, PHYS REV LETT, V2, P387, DOI 10.1103/PhysRevLett.2.387. Buruzs A, 2008, PHILOS MAG, V88, P2615, DOI 10.1080/14786430802438200. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. COLES BR, 1958, ADV PHYS, V7, P40, DOI 10.1080/00018735800101167. COLVIN RV, 1960, PHYS REV, V120, P741, DOI 10.1103/PhysRev.120.741. Coqhlin B., 1977, ELECT STRUCTURE RARE. DEKKER AJ, 1965, J APPL PHYS, V36, P906, DOI 10.1063/1.1714260. Dobrich KM, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.012401. EDWARDS RL, 1968, PHYS REV, V176, P753, DOI 10.1103/PhysRev.176.753. Ellerby M, 1998, PHYS REV B, V57, P8416, DOI 10.1103/PhysRevB.57.8416. Ellerby M, 2000, PHYS REV B, V61, P6790, DOI 10.1103/PhysRevB.61.6790. ELLIOTT RJ, 1963, P PHYS SOC LOND, V81, P846, DOI 10.1088/0370-1328/81/5/308. GREEN RW, 1961, PHYS REV, V122, P827, DOI 10.1103/PhysRev.122.827. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HALL PM, 1960, PHYS REV, V117, P971, DOI 10.1103/PhysRev.117.971. HEGLAND DE, 1963, PHYS REV, V131, P158, DOI 10.1103/PhysRev.131.158. JACOBSSON P, 1989, PHYS REV B, V40, P9541, DOI 10.1103/PhysRevB.40.9541. KASUYA T, 1956, PROG THEOR PHYS, V16, P58, DOI 10.1143/PTP.16.58. KASUYA T, 1959, PROG THEOR PHYS, V22, P227, DOI 10.1143/PTP.22.227. Khmelevskyi S, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.132401. Kurz P, 2002, J PHYS-CONDENS MAT, V14, P6353, DOI 10.1088/0953-8984/14/25/305. LEGVOLD S, 1953, REV MOD PHYS, V25, P129, DOI 10.1103/RevModPhys.25.129. LEGVOLD S, 1971, PHYS REV B-SOLID ST, V3, P1640, DOI 10.1103/PhysRevB.3.1640. LIECHTENSTEIN AI, 1995, PHYS REV B, V52, pR5467. Mackintosh A.R., 1962, Physical Review Letters, V9, P90, DOI 10.1103/PhysRevLett.9.90. MAEZAWA K, 1977, J PHYS SOC JPN, V43, P1815, DOI 10.1143/JPSJ.43.1815. MIWA H, 1962, PROG THEOR PHYS, V28, P208, DOI 10.1143/PTP.28.208. Moriya T., 1985, SPIN FLUCTUATIONS IT. MOTT NF, 1964, ADV PHYS, V13, P325, DOI 10.1080/00018736400101041. NIGH HE, 1963, PHYS REV, V132, P1092, DOI 10.1103/PhysRev.132.1092. STRANDBURG DL, 1962, PHYS REV, V127, P2046, DOI 10.1103/PhysRev.127.2046. Taylor K. N. R., 1972, PHYS RARE EARTH SOLI. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I., 1997, ELECT STRUCTURE DISO. Vonsovskii S. V., 1974, MAGNETISM. WILDING MD, 1965, P PHYS SOC LOND, V85, P955, DOI 10.1088/0370-1328/85/5/313. Wysocki AL, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.224423.}",
	number-of-cited-references = "{42}",
	times-cited = "{9}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{11}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{954FC}",
	unique-id = "{ISI:000304931000003}"
}

V Drchal, J Kudrnovsky and I Turek. Effective magnetic Hamiltonians from first principles. In P Tiberto, M Affronte, F Casoli, CD Fernandez, G Gubbiotti, C Marquina, F Pratt, M Solzi, S Tacchi and P Vavassori (eds.). JEMS 2012 - JOINT EUROPEAN MAGNETIC SYMPOSIA 40. 2012. 6th Joint European Magnetic Symposia (JEMS), Parma, ITALY, SEP 09-14, 2012. BibTeX

@inproceedings{ ISI:000326401300036,
	author = "Drchal, V. and Kudrnovsky, J. and Turek, I.",
	editor = "{Tiberto, P and Affronte, M and Casoli, F and Fernandez, CD and Gubbiotti, G and Marquina, C and Pratt, F and Solzi, M and Tacchi, S and Vavassori, P}",
	title = "{Effective magnetic Hamiltonians from first principles}",
	booktitle = "{JEMS 2012 - JOINT EUROPEAN MAGNETIC SYMPOSIA}",
	series = "{EPJ Web of Conferences}",
	year = "{2012}",
	volume = "{40}",
	note = "{6th Joint European Magnetic Symposia (JEMS), Parma, ITALY, SEP 09-14, 2012}",
	organization = "{CNR, Inst Mat Elect \& Magnetism; Univ Parma, Dept Phys \& Earth Sci; MaTeck Technologie \& Kristalle Gmbh; Springer Verlag Italia; Attocube Syst AG; Cryogen Ltd; IOP Publishing; LakeShore Cryotron Inc; L O T Oriel Italia S r l; NB NanoScale Biomagnet; Oxford Instruments Nanoscience; Tohoku Steel Co Ltd; EPS}",
	abstract = "{We construct effective magnetic Hamiltonians by using the first-principles electronic-structure calculations. These Hamiltonians are used to determine the ground state of solids and nanostructures, and, at T > 0, using the methods of statistical mechanics, also their magnetic properties as a function of temperature. The present approach is highly flexible and it makes possible to find magnetic structure of complex systems with the accuracy of ab initio methods. As illustrations we show (i) how the magnetic structure at T = 0 and at T > 0 can be determined for systems with anisotropic exchange and for systems with several sublattices, (ii) why the magnetic moment in fcc-nickel is unstable upon reversal, and (iii) how to calculate the size of magnetic moment in fcc-Ni at the Curie temperature, which is important for explanation of the spin-disorder resistivity in Ni.}",
	publisher = "{E D P SCIENCES}",
	address = "{17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Drchal, V (Reprint Author), AS CR, Inst Phys, Slovance 2, CZ-18221 Prague 8, Czech Republic. Drchal, V.; Kudrnovsky, J., AS CR, Inst Phys, CZ-18221 Prague 8, Czech Republic.}",
	doi = "{10.1051/epjconf/20134011001}",
	article-number = "{UNSP 11001}",
	issn = "{2100-014X}",
	keywords-plus = "{EXCHANGE INTERACTIONS; SPIN; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Al-Zubi A, 2011, PHYS STATUS SOLIDI B, V248, P2242, DOI 10.1002/pssb.201147090. ALEXANDER S, 1962, PHYS REV, V127, P420, DOI 10.1103/PhysRev.127.420. Deak L., 2011, PHYS REV B, V84. DEDERICHS PH, 1984, PHYS REV LETT, V53, P2512, DOI 10.1103/PhysRevLett.53.2512. GRIMVALL G, 1989, PHYS REV B, V39, P12300, DOI 10.1103/PhysRevB.39.12300. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Ruban AV, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.054402. SCHWARZ K, 1984, J PHYS F MET PHYS, V14, pL129, DOI 10.1088/0305-4608/14/7/008. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Udvardi L, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.104436. WEISS RJ, 1959, J PHYS CHEM SOLIDS, V9, P302, DOI 10.1016/0022-3697(59)90107-6. Wysocki AL, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.224423.}",
	number-of-cited-references = "{12}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	doc-delivery-number = "{BHQ78}",
	unique-id = "{ISI:000326401300036}"
}

J Kudrnovsky, V Drchal, I Turek, S Khmelevskyi, J K Glasbrenner and K D Belashchenko. The disordered local moment approach to the spin-disorder resistivity of metallic ferromagnets. In P Tiberto, M Affronte, F Casoli, CD Fernandez, G Gubbiotti, C Marquina, F Pratt, M Solzi, S Tacchi and P Vavassori (eds.). JEMS 2012 - JOINT EUROPEAN MAGNETIC SYMPOSIA 40. 2012. 6th Joint European Magnetic Symposia (JEMS), Parma, ITALY, SEP 09-14, 2012. BibTeX

@inproceedings{ ISI:000326401300041,
	author = "Kudrnovsky, J. and Drchal, V. and Turek, I. and Khmelevskyi, S. and Glasbrenner, J. K. and Belashchenko, K. D.",
	editor = "{Tiberto, P and Affronte, M and Casoli, F and Fernandez, CD and Gubbiotti, G and Marquina, C and Pratt, F and Solzi, M and Tacchi, S and Vavassori, P}",
	title = "{The disordered local moment approach to the spin-disorder resistivity of metallic ferromagnets}",
	booktitle = "{JEMS 2012 - JOINT EUROPEAN MAGNETIC SYMPOSIA}",
	series = "{EPJ Web of Conferences}",
	year = "{2012}",
	volume = "{40}",
	note = "{6th Joint European Magnetic Symposia (JEMS), Parma, ITALY, SEP 09-14, 2012}",
	organization = "{CNR, Inst Mat Elect \& Magnetism; Univ Parma, Dept Phys \& Earth Sci; MaTeck Technologie \& Kristalle Gmbh; Springer Verlag Italia; Attocube Syst AG; Cryogen Ltd; IOP Publishing; LakeShore Cryotron Inc; L O T Oriel Italia S r l; NB NanoScale Biomagnet; Oxford Instruments Nanoscience; Tohoku Steel Co Ltd; EPS}",
	abstract = "{The spin-disorder resistivity (SDR) of transition metal ferromagnets (Fe, Co, Ni), rare-earth ferromagnet Gd, and Ni2MnSn Heusler alloy is determined from first principles. We identify the SDR at the Curie temperature with the residual resistivity of the corresponding system evaluated in the framework of the disordered local moment (DLM) model which has the zero spin-spin correlation function. The underlying electronic structure is determined in the framework of the tight-binding linear muffin-tin orbital method which employs the coherent potential approximation (CPA) to describe the DLM state. The DLM fixed-spin moment approach is used in the case when the DLM moment collapses. The electronic structure of hcp-Gd is determined using both the open core and LDA+U approaches. The Kubo-Greenwood approach is used to estimate the resistivity. For bcc-Fe and Ni2MnSn alloy we shall also estimate the temperature-dependent of resistivity below the Curie temperature using a semiempirical approach. Calculations are compared with the supercell Landauer-Buttiker approach developed recently as well as with available experimental data and overall good agreement is obtained.}",
	publisher = "{E D P SCIENCES}",
	address = "{17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), AS CR, Inst Phys, Slovance 2, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J.; Drchal, V., AS CR, Inst Phys, CZ-18221 Prague 8, Czech Republic.}",
	doi = "{10.1051/epjconf/20134012001}",
	article-number = "{UNSP 12001}",
	issn = "{2100-014X}",
	keywords-plus = "{ELECTRICAL-RESISTIVITY; ALLOYS; ANOMALIES; FE; NI; CO}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014 Belashchenko, Kirill/A-9744-2008 Glasbrenner, James/K-5614-2015 }",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748 Belashchenko, Kirill/0000-0002-8518-1490 Glasbrenner, James/0000-0003-2198-2309 Khmelevskyi, Sergii/0000-0001-5630-7835}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Bass J., 1982, LANDOLT BORNSTEIN A, V15a, P1. Bose SK, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.174402. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. COLES BR, 1958, ADV PHYS, V7, P40, DOI 10.1080/00018735800101167. DEGENNES PG, 1958, J PHYS CHEM SOLIDS, V4, P71, DOI 10.1016/0022-3697(58)90196-3. Drchal V, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.214414. FISHER ME, 1968, PHYS REV LETT, V20, P665, DOI 10.1103/PhysRevLett.20.665. Glasbrenner JK, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.214405. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. KASUYA T, 1956, PROG THEOR PHYS, V16, P58, DOI 10.1143/PTP.16.58. Kurz P., 2002, J PHYS CONDENS MATT, V14, P6363. MAEZAWA K, 1977, J PHYS SOC JPN, V43, P1815, DOI 10.1143/JPSJ.43.1815. MORUZZI VL, 1986, PHYS REV B, V34, P1784, DOI 10.1103/PhysRevB.34.1784. MOTT NF, 1964, ADV PHYS, V13, P325, DOI 10.1080/00018736400101041. Ruban AV, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.054402. SCHREINER WH, 1982, J PHYS CHEM SOLIDS, V43, P777, DOI 10.1016/0022-3697(82)90245-1. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2000, LECT NOTES PHYS, V535, P349. Uhl M, 1996, PHYS REV LETT, V77, P334, DOI 10.1103/PhysRevLett.77.334. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WEISS RJ, 1959, J PHYS CHEM SOLIDS, V9, P302, DOI 10.1016/0022-3697(59)90107-6. Wysocki A., 2007, J APPL PHYS, V101. Wysocki A., 2008, PHYS REV B, V80. Ziman J.M., 1960, ELECT PHONONS.}",
	number-of-cited-references = "{26}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{4}",
	doc-delivery-number = "{BHQ78}",
	unique-id = "{ISI:000326401300041}"
}

J K Glasbrenner, J M An, J Kudrnovsky, V Drchal, S Khmelevskyi, I Turek and K D Belashchenko. First-principles calculations of transport and magnetic properties of rare-earth materials. In HJ Drouhin, JE Wegrowe and M Razeghi (eds.). SPINTRONICS V 8461. 2012. Conference on Spintronics V, San Diego, CA, AUG 12-16, 2012. BibTeX

@inproceedings{ ISI:000313037400006,
	author = "Glasbrenner, J. K. and An, J. M. and Kudrnovsky, J. and Drchal, V. and Khmelevskyi, S. and Turek, I. and Belashchenko, K. D.",
	editor = "{Drouhin, HJ and Wegrowe, JE and Razeghi, M}",
	title = "{First-principles calculations of transport and magnetic properties of rare-earth materials}",
	booktitle = "{SPINTRONICS V}",
	series = "{Proceedings of SPIE}",
	year = "{2012}",
	volume = "{8461}",
	note = "{Conference on Spintronics V, San Diego, CA, AUG 12-16, 2012}",
	organization = "{SPIE}",
	abstract = "{We describe the applications of first-principles calculations to the analysis of transport and magnetic properties of rare-earth materials. The first application is a detailed calculation of the spin-disorder resistivity of heavy rare-earth metals in the Gd-Tm series. The crystallographic anisotropy of the spin-disorder resistivity agrees well with experiment, but its magnitude is significantly underestimated. Possible origins of this discrepancy are discussed. In the second part we analyze the exchange interaction in Gd-doped EuO using a magnetostructural cluster expansion based on the ab initio total energies. The calculated Curie temperature has a broad maximum extending over 10-20\% Gd concentration and reaching approximately 150 K.}",
	publisher = "{SPIE-INT SOC OPTICAL ENGINEERING}",
	address = "{1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Glasbrenner, JK (Reprint Author), Univ Nebraska, Dept Phys \& Astron, Lincoln, NE 68588 USA. Glasbrenner, J. K.; An, J. M.; Belashchenko, K. D., Univ Nebraska, Dept Phys \& Astron, Lincoln, NE 68588 USA.}",
	doi = "{10.1117/12.930936}",
	article-number = "{84610F}",
	issn = "{0277-786X}",
	isbn = "{978-0-8194-9178-7}",
	keywords-plus = "{DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ELECTRICAL-RESISTIVITY; SINGLE-CRYSTALS; EUROPIUM CHALCOGENIDES; ELECTRONIC-STRUCTURE; FERROMAGNETIC SEMICONDUCTOR; EXCHANGE INTERACTIONS; TRANSITION-METALS}",
	research-areas = "{Optics; Physics}",
	web-of-science-categories = "{Optics; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014 Belashchenko, Kirill/A-9744-2008 Glasbrenner, James/K-5614-2015 }",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748 Belashchenko, Kirill/0000-0002-8518-1490 Glasbrenner, James/0000-0003-2198-2309 Khmelevskyi, Sergii/0000-0001-5630-7835}",
	cited-references = "{ALSTAD JK, 1961, PHYS REV, V123, P418, DOI 10.1103/PhysRev.123.418. An JM, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.064105. ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. Arnold M, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.046404. Baer Y., 1987, HDB PHYSICS CHEM RAR, V10, P1, DOI 10.1016/S0168-1273(87)10004-9. Barbagallo M, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.235216. BLOCHL PE, 1994, PHYS REV B, V50, P17953, DOI 10.1103/PhysRevB.50.17953. BORUKHOVICH AS, 1988, J MAGN MAGN MATER, V73, P106, DOI 10.1016/0304-8853(88)90176-X. BROUT R, 1959, PHYS REV LETT, V2, P387, DOI 10.1103/PhysRevLett.2.387. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. COLES BR, 1958, ADV PHYS, V7, P40, DOI 10.1080/00018735800101167. COLVIN RV, 1960, PHYS REV, V120, P741, DOI 10.1103/PhysRev.120.741. Comment A., 2005, PHYS REV B, V72. CONNOLLY JWD, 1983, PHYS REV B, V27, P5169, DOI 10.1103/PhysRevB.27.5169. Coqblin B., 1978, ELECT STRUCTURE RARE. deFontaine D, 1994, SOLID STATE PHYS, V47, P33. Drautz R, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.104404. Ducastelle F., 1991, ORDER PHASE STABILIT. EASTMAN DE, 1969, PHYS REV LETT, V23, P226, DOI 10.1103/PhysRevLett.23.226. EDWARDS RL, 1968, PHYS REV, V176, P753, DOI 10.1103/PhysRev.176.753. Ellerby M, 1998, PHYS REV B, V57, P8416, DOI 10.1103/PhysRevB.57.8416. Ellerby M, 2000, PHYS REV B, V61, P6790, DOI 10.1103/PhysRevB.61.6790. EMIN D, 1986, PHYS REV B, V33, P2933, DOI 10.1103/PhysRevB.33.2933. Glasbrenner JK, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.214405. GREEN RW, 1961, PHYS REV, V122, P827, DOI 10.1103/PhysRev.122.827. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HALL PM, 1960, PHYS REV, V117, P971, DOI 10.1103/PhysRev.117.971. HEGLAND DE, 1963, PHYS REV, V131, P158, DOI 10.1103/PhysRev.131.158. Ingle NJC, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.121202. JACOBSSON P, 1989, PHYS REV B, V40, P9541, DOI 10.1103/PhysRevB.40.9541. Jensen J., 1991, RARE EARTH MAGNETISM. KASUYA T, 1956, PROG THEOR PHYS, V16, P45, DOI 10.1143/PTP.16.45. KASUYA T, 1956, PROG THEOR PHYS, V16, P58, DOI 10.1143/PTP.16.58. KASUYA T, 1970, IBM J RES DEV, V14, P214. Kimura S, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.052409. Konno TJ, 1998, JPN J APPL PHYS 2, V37, pL787, DOI 10.1143/JJAP.37.L787. Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169. Kresse G, 1999, PHYS REV B, V59, P1758, DOI 10.1103/PhysRevB.59.1758. Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0. KRESSE G, 1993, PHYS REV B, V48, P13115, DOI 10.1103/PhysRevB.48.13115. Kunes J, 2005, J PHYS SOC JPN, V74, P1408, DOI 10.1143/JPSJ.74.1408. Kurz P, 2002, J PHYS-CONDENS MAT, V14, P6353, DOI 10.1088/0953-8984/14/25/305. Larson P, 2006, J PHYS-CONDENS MAT, V18, P11333, DOI 10.1088/0953-8984/18/49/024. LEGVOLD S, 1953, REV MOD PHYS, V25, P129, DOI 10.1103/RevModPhys.25.129. LEGVOLD S, 1971, PHYS REV B-SOLID ST, V3, P1640, DOI 10.1103/PhysRevB.3.1640. LIECHTENSTEIN AI, 1995, PHYS REV B, V52, pR5467. MAEZAWA K, 1977, J PHYS SOC JPN, V43, P1815, DOI 10.1143/JPSJ.43.1815. Mairoser T, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.257206. Matsumoto T, 2004, J PHYS-CONDENS MAT, V16, P6017, DOI 10.1088/0953-8984/16/34/003. MAUGER A, 1977, PHYS STATUS SOLIDI B, V84, P761, DOI 10.1002/pssb.2220840242. Miyazaki H, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.227203. MOTT NF, 1964, ADV PHYS, V13, P325, DOI 10.1080/00018736400101041. MUNZ P, 1976, HELV PHYS ACTA, V49, P281. Nagaev E. L., 1983, PHYS MAGNETIC SEMICO. NIGH HE, 1963, PHYS REV, V132, P1092, DOI 10.1103/PhysRev.132.1092. OLIVER MR, 1972, PHYS REV B-SOLID ST, V5, P1078, DOI 10.1103/PhysRevB.5.1078. PASSELL L, 1976, PHYS REV B, V14, P4897, DOI 10.1103/PhysRevB.14.4897. Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865. Rho H, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.127401. RUDERMAN MA, 1954, PHYS REV, V96, P99, DOI 10.1103/PhysRev.96.99. SANCHEZ JM, 1984, PHYSICA A, V128, P334, DOI 10.1016/0378-4371(84)90096-7. Santana JAC, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.014406. Santos TS, 2012, HANDBOOK OF SPIN TRANSPORT AND MAGNETISM, P251. Schmehl A, 2007, NAT MATER, V6, P882, DOI 10.1038/nmat2012. Shai DE, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.267003. Storchak VG, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.235203. STRANDBURG DL, 1962, PHYS REV, V127, P2046, DOI 10.1103/PhysRev.127.2046. Sutarto R, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.085308. Swartz AG, 2010, APPL PHYS LETT, V97, DOI 10.1063/1.3490649. Takahashi M, 2011, J PHYS SOC JPN, V80, DOI 10.1143/JPSJ.80.075001. Taylor K. N. R., 1972, PHYS RARE EARTH SOLI. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I., 1997, ELECT STRUCTURE DISO. van de Walle A, 2002, J PHASE EQUILIB, V23, P348. Vonsovskii S. V., 1974, MAGNETISM. WACHTER P, 1979, HDB PHYSICS CHEM RAR, V2, P507, DOI 10.1016/S0168-1273(79)02010-9. Wan XG, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.205201. Wang H, 2012, CHEM PHYS LETT, V524, P68, DOI 10.1016/j.cplett.2011.12.034. WILDING MD, 1965, P PHYS SOC LOND, V85, P955, DOI 10.1088/0370-1328/85/5/313. Wysocki AL, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.224423. YOSIDA K, 1957, PHYS REV, V106, P893, DOI 10.1103/PhysRev.106.893. ZUNGER A, 1994, NATO ADV SCI INST SE, V319, P361.}",
	number-of-cited-references = "{83}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{3}",
	usage-count-since-2013 = "{18}",
	doc-delivery-number = "{BDF65}",
	unique-id = "{ISI:000313037400006}"
}

J Kudrnovsky, V Drchal, S Khmelevskyi and I Turek. Effects of atomic and magnetic order on electronic transport in Pd-rich Pd-Fe alloys. PHYSICAL REVIEW B 84(21), 2011. BibTeX

@article{ ISI:000298551500006,
	author = "Kudrnovsky, J. and Drchal, V. and Khmelevskyi, S. and Turek, I.",
	title = "{Effects of atomic and magnetic order on electronic transport in Pd-rich Pd-Fe alloys}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2011}",
	volume = "{84}",
	number = "{21}",
	month = "{DEC 27}",
	abstract = "{The transport properties of Pd-rich PdFe alloys are investigated as a function of the atomic and magnetic order on the L2(1) (Cu3Au) lattice. The residual resistivity, anisotropic magnetoresistance (AMR), and anomalous Hall effect are calculated from first principles in their dependence on the degree of atomic order. The calculations are based on the relativistic generalization of the transport Kubo-Greenwood approach as formulated in the framework of the first-principles tight-binding linear muffin-tin orbital (TB-LMTO) method and coherent potential approximation (CPA). The effect of the thermal magnetic disorder on the resistivity (thermal magnetoresistance) and AMR has been also studied using the disordered local moment approach based on the CPA. It is found that the experimentally observed fast decrease of AMR ratio with temperature can be mostly ascribed to the spin disorder effects. Our results are in an overall good agreement with available experimental data.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Khmelevskyi, S., Vienna Univ Technol, CMS, Inst Appl Phys, AT-1020 Vienna, Austria. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.84.214436}",
	article-number = "{214436}",
	issn = "{1098-0121}",
	keywords-plus = "{DISORDERED PD3FE; MAGNETORESISTANCE; RESISTIVITY; RESISTANCE; SYSTEMS; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 }",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417 Khmelevskyi, Sergii/0000-0001-5630-7835}",
	funding-acknowledgement = "{Czech Science Foundation {[}P204/11/1228]; Austrian OEFG within MOEL program {[}500]; {[}AV0Z 10100520]; {[}AV0Z 20410507]}",
	funding-text = "{The authors acknowledge the financial support from AV0Z 10100520 (J.K. and V.D.), AV0Z 20410507 (I.T.), and from the Czech Science Foundation (P204/11/1228). S.K. acknowledges support from Austrian OEFG within MOEL program (No. 500).}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Banhart J, 2002, EUROPHYS LETT, V58, P264, DOI 10.1209/epl/i2002-00632-4. BANHART J, 1995, EUROPHYS LETT, V32, P517, DOI 10.1209/0295-5075/32/6/010. Bose SK, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.174402. BOSE SK, 1990, J MAGN MAGN MATER, V87, P97, DOI 10.1016/0304-8853(90)90201-Z. CABLE JW, 1965, PHYS REV, V138, pA755, DOI 10.1103/PhysRev.138.A755. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Crepieux A, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.014416. Fassbender J, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.174430. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HSU Y, 1979, J APPL PHYS, V50, P1907, DOI 10.1063/1.327160. KASUYA T, 1956, PROG THEOR PHYS, V16, P58, DOI 10.1143/PTP.16.58. Khmelevskyi S, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.012402. Khmelevskyi S, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.037201. KOON NC, 1972, PHYS REV B-SOLID ST, V6, P4241, DOI 10.1103/PhysRevB.6.4241. KUHNEN CA, 1987, J MAGN MAGN MATER, V67, P260, DOI 10.1016/0304-8853(87)90241-1. Lowitzer S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.266604. MATVEYEV VA, 1982, FIZ MET METALLOVED+, V53, P34. MORUZZI VL, 1992, PHYS REV B, V46, P14198, DOI 10.1103/PhysRevB.46.14198. Rossiter R. L., 1987, ELECT RESISTIVITY ME. Sandratskii LM, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.174408. SHIRANE G, 1964, PHYS REV, V134, P1547. Skalski S, 1970, PHYS REV B-SOLID ST, V2, P3613, DOI 10.1103/PhysRevB.2.3613. Tulip PR, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.165116. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2002, J MAGN MAGN MATER, V240, P162, DOI 10.1016/S0304-8853(01)00743-0. Turek I, 2010, J PHYS CONF SER, V200, DOI 10.1088/1742-6596/200/5/052029. Turek I, 2008, PHILOS MAG, V88, P2787, DOI 10.1080/14786430802232553. Turek I., 1997, ELECT STRUCTURE DISO. Turek I., ARXIV11114793. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Weinberger P, 2003, PHYS REP, V377, P281, DOI 10.1016/S0370-1573(02)00600-2. Wysocki AL, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.224423. Xu B, 2007, PHYS LETT A, V363, P312, DOI 10.1016/j.physleta.2006.11.022. Ziman J.M., 1960, ELECT PHONONS.}",
	number-of-cited-references = "{35}",
	times-cited = "{12}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{7}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{868UN}",
	unique-id = "{ISI:000298551500006}"
}

S K Bose, J Kudrnovsky, V Drchal and I Turek. Pressure dependence of Curie temperature and resistivity in complex Heusler alloys. PHYSICAL REVIEW B 84(17), 2011. BibTeX

@article{ ISI:000297157500005,
	author = "Bose, S. K. and Kudrnovsky, J. and Drchal, V. and Turek, I.",
	title = "{Pressure dependence of Curie temperature and resistivity in complex Heusler alloys}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2011}",
	volume = "{84}",
	number = "{17}",
	month = "{NOV 18}",
	abstract = "{Using first-principles electronic structure calculations, we have studied the dependence of the Curie temperature on external hydrostatic pressure for random Ni(2)MnSn Heusler alloys doped with Cu and Pd atoms, over the entire range of dopant concentrations. The Curie temperatures are calculated by applying random-phase approximation to the Heisenberg Hamiltonian whose parameters are determined using the linear response and multiple scattering methods, based on density-functional theory. In (Ni(1-x),Pd(x))(2)MnSn alloys, the Curie temperature is found to increase with applied pressure over the whole concentration range. The crossover from the increase to the decrease of the Curie temperature with pressure takes place for Cu concentrations larger than about 70\% in (Ni(1-x),Cu(x))(2)MnSn Heusler alloys. The results for the reference Ni(2)MnSn Heusler alloy agree well with a previous theoretical study of E. Sasioglu, L.M. Sandratskii, and P. Bruno, Phys. Rev. B 71, 214412 (2005) and also reasonably well with available experimental data. Results for the spin-disorder-induced part of the resistivity in (Ni(1-x),Pd(x))(2)MnSn Heusler alloys, calculated by using the disordered local moment model, are also presented. Finally, a qualitative understanding of the results, based on Anderson's superexchange interaction and Stearn's model of the indirect exchange interaction between localized and itinerant d electrons, is provided.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Bose, SK (Reprint Author), Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada. Bose, S. K., Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Turek, I., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CZ-12116 Prague 2, Czech Republic.}",
	doi = "{10.1103/PhysRevB.84.174422}",
	article-number = "{174422}",
	issn = "{1098-0121}",
	keywords-plus = "{EXCHANGE INTERACTIONS; FERROMAGNETIC METALS; MAGNETIC-PROPERTIES; PHASE-TRANSITIONS; BEHAVIOR; ORIGIN; NI}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	funding-acknowledgement = "{Natural Sciences and Engineering Research Council of Canada; Czech Science Foundation {[}202/09/0775, 202/09/0030]; Ministry of Education of the Czech Republic {[}MSM 0021620834]; {[}AV0Z 10100520]}",
	funding-text = "{This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. J.K. and V.D. acknowledge financial support from Grant No. AV0Z 10100520 and the Czech Science Foundation (Grant No. 202/09/0775). The work of I.T. has been supported by the Ministry of Education of the Czech Republic (Grant No. MSM 0021620834) and by the Czech Science Foundation (Grant No. 202/09/0030).}",
	cited-references = "{Alling B, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.134417. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. ANDERSON PW, 1961, PHYS REV, V124, P41, DOI 10.1103/PhysRev.124.41. AUSTIN IG, 1967, PHILOS MAG, V15, P529, DOI 10.1080/14786436708220900. BEGGEROW G, 1980, HIGH PRESSURE PROPER, V4. Bergqvist L, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.137202. BLOCH D, 1965, J APPL PHYS, V36, P1229, DOI 10.1063/1.1714181. Bose SK, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.174402. Bose SK, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.054446. Chieda Y, 2009, J ALLOY COMPD, V486, P51, DOI 10.1016/j.jallcom.2009.06.206. Csontos M, 2005, NAT MATER, V4, P447, DOI 10.1038/nmat1388. CYROT M, 1984, J MAGN MAGN MATER, V45, P9, DOI 10.1016/0304-8853(84)90366-4. DIMASI E, 1993, PHYS REV B, V47, P14301, DOI 10.1103/PhysRevB.47.14301. Gavriliuk A. G., 1999, J APPL PHYS, V79, P2609. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. KASUYA T, 1956, PROG THEOR PHYS, V16, P58, DOI 10.1143/PTP.16.58. KASUYA T, 1959, PROG THEOR PHYS, V22, P227, DOI 10.1143/PTP.22.227. Kormann F, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.184406. Krenke T, 2005, NAT MATER, V4, P450, DOI 10.1038/nmat1395. Kudrnovsky J, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.224422. Kudrnovsky J, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.054441. Kurtulus Y, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.014425. LANG ND, 1967, J APPL PHYS, V38, P1316, DOI 10.1063/1.1709600. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. LIU SH, 1962, PHYS REV, V127, P1889, DOI 10.1103/PhysRev.127.1889. McMillan PF, 2002, NAT MATER, V1, P19, DOI 10.1038/nmat716. Meinert M, 2011, J PHYS-CONDENS MAT, V23, DOI 10.1088/0953-8984/23/3/036001. Moran S, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.012407. Ondracek M, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.064410. Ozdogan K, 2008, J APPL PHYS, V103, DOI 10.1063/1.2831224. REITZ JR, 1979, J APPL PHYS, V50, P2066, DOI 10.1063/1.327112. Rusz J, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.214412. Sasioglu E, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.214412. Sasioglu E, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.064417. SCHREINER WH, 1982, J PHYS CHEM SOLIDS, V43, P777, DOI 10.1016/0022-3697(82)90245-1. STEARNS MB, 1979, J APPL PHYS, V50, P2060, DOI 10.1063/1.327110. STEARNS MB, 1980, J MAGN MAGN MATER, V15-8, P301, DOI 10.1016/0304-8853(80)91060-4. STEARNS MB, 1978, PHYS TODAY, V31, P34. Tegus O, 2002, PHYSICA B, V319, P174, DOI 10.1016/S0921-4526(02)01119-5. Turek I, 2007, J ALLOY COMPD, V431, P37, DOI 10.1016/j.jallcom.2006.05.057. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I., 1997, ELECT STRUCTURE DISO. UHL E, 1985, SOLID STATE COMMUN, V53, P395, DOI 10.1016/0038-1098(85)90993-7. UHL E, 1982, MONATSH CHEM, V113, P275. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Webster P. J., 1988, MAGNETIC PROPERTIES, V19, P75. YAMAMOTO Y, 1979, JPN J APPL PHYS, V18, P2139, DOI 10.1143/JJAP.18.2139.}",
	number-of-cited-references = "{49}",
	times-cited = "{12}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{18}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{849XA}",
	unique-id = "{ISI:000297157500005}"
}

Jiri Kamarad, Josef Kudrnovsky, Zdenek Arnold, Vaclav Drchal and Ilja Turek. Pressure effect on magnetic moments in ordered Ni3Mn and disordered Ni100-xMnx alloys: ab initio calculation and experiment. HIGH PRESSURE RESEARCH 31(1):116-120, 2011. BibTeX

@article{ ISI:000288660500024,
	author = "Kamarad, Jiri and Kudrnovsky, Josef and Arnold, Zdenek and Drchal, Vaclav and Turek, Ilja",
	title = "{Pressure effect on magnetic moments in ordered Ni3Mn and disordered Ni100-xMnx alloys: ab initio calculation and experiment}",
	journal = "{HIGH PRESSURE RESEARCH}",
	year = "{2011}",
	volume = "{31}",
	number = "{1}",
	pages = "{116-120}",
	abstract = "{We have revealed a substantial difference in the pressure behavior of magnetization of the ordered Ni3Mn and the disordered Ni75Mn25 and Ni80Mn20 alloys in the pressure range up to 1.2GPa. To explain in detail the peculiarities of magnetic properties of the Ni-rich NiMn alloys, the reference electronic structure of the alloys was calculated using the tight-binding linear muffin-tin orbital approach. The effect of disorder was described by the coherent potential approximation. The theoretical ab initio calculations (with changes of the lattice parameters up to 1\%) elucidated the pressure stability of the magnetic Mn moments and revealed that the very pronounced decrease in the magnetization of the disordered alloys under pressure is caused by the relatively small change in portion of the Mn moments with parallel and anti-parallel orientation with respect to the total moment. The quantitative agreement with experiment has been reached for the pressure parameters dln M/dP.}",
	publisher = "{TAYLOR \& FRANCIS LTD}",
	address = "{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kamarad, J (Reprint Author), VVI, Inst Phys AS CR, Prague 8, Czech Republic. Kamarad, Jiri; Kudrnovsky, Josef; Arnold, Zdenek; Drchal, Vaclav, VVI, Inst Phys AS CR, Prague 8, Czech Republic. Turek, Ilja, Charles Univ Prague, Fac Math \& Phys, Prague 2, Czech Republic.}",
	doi = "{10.1080/08957959.2010.529808}",
	article-number = "{PII 929136440}",
	issn = "{0895-7959}",
	keywords = "{TB-LMTO-CPA; disordered-local moment; Ni3Mn; pressure}",
	keywords-plus = "{NI-MN ALLOYS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Arnold, Zdenek/B-2107-2012 Turek, Ilja/G-5553-2014 Kamarad, Jiri/G-5880-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Kamarad, Jiri/0000-0003-3502-9930 Drchal, Vaclav/0000-0002-6628-7417}",
	funding-acknowledgement = "{Grant Agency of the Czech Republic {[}202/09/1027]}",
	funding-text = "{This work was supported by the Grant Agency of the Czech Republic, project no. 202/09/1027.}",
	cited-references = "{ABDULRAZZAQ W, 1984, J APPL PHYS, V55, P1623, DOI 10.1063/1.333425. AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. ARNOLD Z, 1980, J MAGN MAGN MATER, V15-8, P1167, DOI 10.1016/0304-8853(80)90237-1. Kamarad J, 2004, REV SCI INSTRUM, V75, P5022, DOI 10.1063/1.1808122. MAZZONE G, 1992, PHYS REV B, V46, P11665, DOI 10.1103/PhysRevB.46.11665. PIERCY GR, 1953, CAN J PHYS, V31, P529. Sun NQ, 2009, J ALLOY COMPD, V480, P87, DOI 10.1016/j.jallcom.2008.09.209. TANGE H, 1980, J PHYS SOC JPN, V49, P957, DOI 10.1143/JPSJ.49.957. TANGE H, 1978, J PHYS SOC JPN, V45, P105, DOI 10.1143/JPSJ.45.105. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{10}",
	times-cited = "{4}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{4}",
	journal-iso = "{High Pressure Res.}",
	doc-delivery-number = "{738RT}",
	unique-id = "{ISI:000288660500024}"
}

S K Bose, J Kudrnovsky, V Drchal and I Turek. Magnetism of mixed quaternary Heusler alloys: (Ni,T)(2)MnSn (T=Cu,Pd) as a case study. PHYSICAL REVIEW B 82(17), 2010. BibTeX

@article{ ISI:000283708600002,
	author = "Bose, S. K. and Kudrnovsky, J. and Drchal, V. and Turek, I.",
	title = "{Magnetism of mixed quaternary Heusler alloys: (Ni,T)(2)MnSn (T=Cu,Pd) as a case study}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2010}",
	volume = "{82}",
	number = "{17}",
	month = "{NOV 2}",
	abstract = "{The electronic properties, exchange interactions, finite-temperature magnetism, and transport properties of random quaternary Heusler Ni2MnSn alloys doped with Cu and Pd atoms are studied theoretically by means of ab initio calculations over the entire range of dopant concentrations. While the magnetic moments are only weakly dependent on the alloy composition, the Curie temperatures exhibit strongly nonlinear behavior with respect to Cu doping in contrast with an almost linear concentration dependence in the case of Pd doping. The present parameter-free theory agrees qualitatively and also reasonably well quantitatively with the available experimental results. An analysis of exchange interactions is provided for a deeper understanding of the problem. The dopant atoms perturb electronic structure close to the Fermi energy only weakly and the residual resistivity thus obeys a simple Nordheim rule. The dominating contribution to the temperature-dependent resistivity is due to thermodynamical fluctuations originating from the spin disorder, which, according to our calculations, can be described successfully via the disordered local moments model. Results based on this model agree fairly well with the measured values of spin-disorder-induced resistivity.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Bose, SK (Reprint Author), Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada. Bose, S. K., Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Turek, I., Charles Univ Prague, Dept Condensed Matter Phys, Fac Math \& Phys, CZ-12116 Prague 2, Czech Republic.}",
	doi = "{10.1103/PhysRevB.82.174402}",
	article-number = "{174402}",
	issn = "{2469-9950}",
	eissn = "{2469-9969}",
	keywords-plus = "{EXCHANGE INTERACTIONS; FERROMAGNETIC METALS; PHASE-TRANSITIONS; SPIN-WAVES; BEHAVIOR; RESISTIVITY; DISORDER; NI2MNSN; FIELD}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	funding-acknowledgement = "{Natural Sciences and Engineering Research Council of Canada; Czech Science Foundation {[}202/09/0775]; Ministry of Education of the Czech Republic {[}MSM 0021620834]; {[}AV0Z 10100520]}",
	funding-text = "{This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. J.K. and V.D. acknowledge financial support from. AV0Z 10100520 and from the Czech Science Foundation (Grant No. 202/09/0775). The work of I.T. has been supported by the Ministry of Education of the Czech Republic (Project No. MSM 0021620834) and by the Czech Science Foundation (Project No. 202/09/0030). J.K. also acknowledges the kind hospitality of the Physics Department at Brock University where most of this work was carried out.}",
	cited-references = "{AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. Alling B, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.134417. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Balke B, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.104405. Bergqvist L, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.195210. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Duong NP, 2007, J MAGN MAGN MATER, V311, P605, DOI 10.1016/j.jmmm.2006.08.023. FISHER ME, 1968, PHYS REV LETT, V20, P665, DOI 10.1103/PhysRevLett.20.665. FRAGA GL, 1985, J PHYS CHEM SOLIDS, V46, P1071, DOI 10.1016/0022-3697(85)90022-8. Galanakis I, 2007, J PHYS-CONDENS MAT, V19, DOI 10.1088/0953-8984/19/31/315213. Galanakis I, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2235913. Galanakis I, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.214417. Gavriliuk AG, 1996, J APPL PHYS, V79, P2609, DOI 10.1063/1.361130. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. ISHIDA S, 1981, J PHYS F MET PHYS, V11, P1035, DOI 10.1088/0305-4608/11/5/008. KASUYA T, 1956, PROG THEOR PHYS, V16, P58, DOI 10.1143/PTP.16.58. KOBEISSI MA, 1981, PHYS REV B, V24, P2380, DOI 10.1103/PhysRevB.24.2380. Krenke T, 2005, NAT MATER, V4, P450, DOI 10.1038/nmat1395. Kubler J, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.220403. KUBLER J, 1983, PHYS REV B, V28, P1745, DOI 10.1103/PhysRevB.28.1745. Kudrnovsky J, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.224422. Kudrnovsky J, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.054441. Kudrnovsky J, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.064405. Kurtulus Y, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.014425. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Miura Y, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.144413. NODA Y, 1976, J PHYS SOC JPN, V40, P690, DOI 10.1143/JPSJ.40.690. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. PICOZZI S, 2008, ADV SOLID STATE PHYS, V47, P139. REITZ JR, 1979, J APPL PHYS, V50, P2066, DOI 10.1063/1.327112. Ren SK, 2005, J MAGN MAGN MATER, V288, P276, DOI 10.1016/j.jmmm.2004.09.107. Rusz J, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.214412. Sakuraba Y, 2006, APPL PHYS LETT, V88, DOI 10.1063/1.2202724. Sandratskii LM, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.184406. Sasioglu E, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.214412. Sasioglu E, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.024427. Sasioglu E, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.064417. SCHREINER WH, 1982, J PHYS CHEM SOLIDS, V43, P777, DOI 10.1016/0022-3697(82)90245-1. STEARNS MB, 1979, J APPL PHYS, V50, P2060, DOI 10.1063/1.327110. Tegus O, 2002, PHYSICA B, V319, P174, DOI 10.1016/S0921-4526(02)01119-5. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. TUREK I, 2000, ELECT STRUCTURE PHYS, V535, P349, DOI 10.1007/3-540-46437-9\_10. Turek I., 1997, ELECT STRUCTURE DISO. UHL E, 1985, SOLID STATE COMMUN, V53, P395, DOI 10.1016/0038-1098(85)90993-7. UHL E, 1982, MONATSH CHEM, V113, P275. Ullakko K, 1996, APPL PHYS LETT, V69, P1966, DOI 10.1063/1.117637. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WEBSTER PJ, 1988, LANDOLTBORNSTEIN C 1, V19, P75, DOI DOI 10.1007/10353201\_. Ziman J.M., 1960, ELECT PHONONS.}",
	number-of-cited-references = "{51}",
	times-cited = "{15}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{11}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{674BN}",
	unique-id = "{ISI:000283708600002}"
}

K Sato, L Bergqvist, J Kudrnovsky, P H Dederichs, O Eriksson, I Turek, B Sanyal, G Bouzerar, H Katayama-Yoshida, V A Dinh, T Fukushima, H Kizaki and R Zeller. First-principles theory of dilute magnetic semiconductors. REVIEWS OF MODERN PHYSICS 82(2):1633-1690, 2010. BibTeX

@article{ ISI:000278229500001,
	author = "Sato, K. and Bergqvist, L. and Kudrnovsky, J. and Dederichs, P. H. and Eriksson, O. and Turek, I. and Sanyal, B. and Bouzerar, G. and Katayama-Yoshida, H. and Dinh, V. A. and Fukushima, T. and Kizaki, H. and Zeller, R.",
	title = "{First-principles theory of dilute magnetic semiconductors}",
	journal = "{REVIEWS OF MODERN PHYSICS}",
	year = "{2010}",
	volume = "{82}",
	number = "{2}",
	pages = "{1633-1690}",
	month = "{MAY 20}",
	abstract = "{This review summarizes recent first-principles investigations of the electronic structure and magnetism of dilute magnetic semiconductors (DMSs), which are interesting for applications in spintronics. Details of the electronic structure of transition-metal-doped III-V and II-VI semiconductors are described, especially how the electronic structure couples to the magnetic properties of an impurity. In addition, the underlying mechanism of the ferromagnetism in DMSs is investigated from the electronic structure point of view in order to establish a unified picture that explains the chemical trend of the magnetism in DMSs. Recent efforts to fabricate high-TC DMSs require accurate materials design and reliable TC predictions for the DMSs. In this connection, a hybrid method (ab initio calculations of effective exchange interactions coupled to Monte Carlo simulations for the thermal properties) is discussed as a practical method for calculating the Curie temperature of DMSs. The calculated ordering temperatures for various DMS systems are discussed, and the usefulness of the method is demonstrated. Moreover, in order to include all the complexity in the fabrication process of DMSs into advanced materials design, spinodal decomposition in DMSs is simulated and we try to assess the effect of inhomogeneity in them. Finally, recent works on first-principles theory of transport properties of DMSs are reviewed. The discussion is mainly based on electronic structure theory within the local-density approximation to density-functional theory.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Sato, K (Reprint Author), Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Osaka 5608531, Japan. Sato, K.; Katayama-Yoshida, H.; Kizaki, H., Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan. Bergqvist, L.; Eriksson, O.; Sanyal, B., Uppsala Univ, Dept Phys \& Astron, SE-75120 Uppsala, Sweden. Kudrnovsky, J., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Dederichs, P. H.; Zeller, R., Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Bouzerar, G., CNRS, Inst Neel, MCBT, F-38042 Grenoble, France. Dinh, V. A., Natl Inst Mat Sci, Computat Mat Sci Ctr, Tsukuba, Ibaraki 3050047, Japan. Fukushima, T., Univ Aquila, CNR, INFM, Dept Phys, I-67010 Laquila, Abruzzo, Italy.}",
	doi = "{10.1103/RevModPhys.82.1633}",
	issn = "{0034-6861}",
	eissn = "{1539-0756}",
	keywords-plus = "{COHERENT-POTENTIAL APPROXIMATION; HIGH-CURIE-TEMPERATURE; MN-DOPED ZNO; V-FERROMAGNETIC SEMICONDUCTORS; POLARIZED ELECTRONIC-STRUCTURE; INTERSTITIAL IRON IMPURITY; TRANSITION-METAL COMPOUNDS; TRANSPARENT THIN-FILMS; EXCHANGE INTERACTIONS; MATERIALS DESIGN}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Fukushima, Tetsuya/E-5799-2010 Sanyal, Biplab/G-4416-2011 Zeller, Rudolf/K-7094-2013 Eriksson, Olle/E-3265-2014 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Bergqvist, Lars/J-5282-2014}",
	orcid-numbers = "{Sanyal, Biplab/0000-0002-3687-4223 Zeller, Rudolf/0000-0002-9462-2649 Eriksson, Olle/0000-0001-5111-1374 KUDRNOVSKY, Josef/0000-0002-9968-6748 Bergqvist, Lars/0000-0003-4341-5663}",
	funding-acknowledgement = "{JST-CREST {[}17064014]; NEDO-nanotech; 21st Century COE; JSPS; GCOE; National Science Foundation {[}PHY99-07949]; Kansai Research Foundation for technology promotion (KRF); Murata Science Foundation, Inoue Foundation for Science (IFS); TEPCO Research Foundation (TRF); Yukawa Memorial Foundation; Foundation for CC Promotion; Grant Agency of the AS CR {[}A100100616]; Czech Grant Agency {[}202/07/0456]; European Union (EU); Swedish Research Council; Foundation for Strategic Research; SNAC; ERC; {[}AV0Z10100520]; {[}AV0Z20410507]}",
	funding-text = "{This research was partially supported by a Grantin- Aid for Scientific Research in Priority Areas ``Quantum Simulators and Quantum Design{''} (Grant No. 17064014) and ``Semiconductor Nanospintronics,{''} a Grand-in-Aid for Scientific Research for young researchers, JST-CREST, NEDO-nanotech, the 21st Century COE, the JSPS core-to-core program `` Computational Nano-materials Design,{''} and the GCOE program `` Core Research and Engineering of Advanced Materials-Interdisciplinary Education Center for Materials Science.{''} K. S. acknowledges financial support from the National Science Foundation under Grant No. PHY99-07949 (Kavli Institute for Theoretical Physics SPINTRONICS06 Program at University of California, Santa Barbara), the Kansai Research Foundation for technology promotion (KRF), the Murata Science Foundation, Inoue Foundation for Science (IFS), TEPCO Research Foundation (TRF), and Yukawa Memorial Foundation (Mochizuki Fund). T. F. acknowledges financial support from the Foundation for C\&C Promotion. J.K. and I. T. acknowledge financial support from Institutional Research Projects (Grants No. AV0Z10100520 and No. AV0Z20410507), the Grant Agency of the AS CR (Grant No. A100100616), and the Czech Grant Agency (Grant No. 202/07/0456). L. B. acknowledges support from the European Union (EU) in the framework of Marie Curie Actions for Mobility and Human Resources. O.E. and B. S. thank the Swedish Research Council, The Foundation for Strategic Research, and SNAC for support. O.E. is grateful to the ERC for support.}",
	cited-references = "{AHARONI A, 2000, INTRO THEORY FERROMA, P92. AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. AKAI H, 1989, J PHYS-CONDENS MAT, V1, P8045, DOI 10.1088/0953-8984/1/43/006. Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. ANDERSEN OK, 1980, PURE APPL CHEM, V52, P93, DOI 10.1351/pac198052010093. ANDERSON PW, 1955, PHYS REV, V100, P675, DOI 10.1103/PhysRev.100.675. ANDERSON PW, 1963, SOLID STATE PHYS, V14, P99. ANDERSON PW, 1950, PHYS REV, V79, P350, DOI 10.1103/PhysRev.79.350. ANDERSON PW, 1961, PHYS REV, V124, P41, DOI 10.1103/PhysRev.124.41. ANDERSON PW, 1975, PHYS REV LETT, V34, P953, DOI 10.1103/PhysRevLett.34.953. Anisimov VI, 1997, J PHYS-CONDENS MAT, V9, P767, DOI 10.1088/0953-8984/9/4/002. Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. BAIBICH MN, 1988, PHYS REV LETT, V61, P2472, DOI 10.1103/PhysRevLett.61.2472. Banhart J, 2002, EUROPHYS LETT, V58, P264, DOI 10.1209/epl/i2002-00632-4. BANHART J, 1995, EUROPHYS LETT, V32, P517, DOI 10.1209/0295-5075/32/6/010. BEELER F, 1985, PHYS REV LETT, V55, P1498, DOI 10.1103/PhysRevLett.55.1498. Belhadji B, 2007, J PHYS-CONDENS MAT, V19, DOI 10.1088/0953-8984/19/43/436227. Bergqvist L, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.195210. Bergqvist L, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.137202. Bergqvist L, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.205201. BINASCH G, 1989, PHYS REV B, V39, P4828, DOI 10.1103/PhysRevB.39.4828. BINDER K, 2002, MONTE CARLO SIMULATI, P39. BLACKMAN JA, 1969, J PHYS PART C SOLID, V2, P1670, DOI 10.1088/0022-3719/2/9/317. Bonanni A, 2007, SEMICOND SCI TECH, V22, pR41, DOI 10.1088/0268-1242/22/9/R01. Bonanni A, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.125210. Bouzerar G, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.125207. Bouzerar G, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014410. Bouzerar G, 2005, EUROPHYS LETT, V69, P812, DOI 10.1209/epl/i2004-10473-1. Bouzerar G, 2004, APPL PHYS LETT, V85, P4941, DOI 10.1063/1.1826226. Bouzerar G, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.081203. Bouzerar G, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.144419. Bouzerar G, 2007, EPL-EUROPHYS LETT, V79, DOI 10.1209/0295-5075/79/57007. Bouzerar G, 2006, PHYS STATUS SOLIDI A, V203, P2989, DOI 10.1002/pssa.200567046. Bouzerar R, 2007, EPL-EUROPHYS LETT, V78, DOI 10.1209/0295-5075/78/67003. Bouzerar R, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.024411. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. BRUNO P, 1991, PHYS REV LETT, V67, P1602, DOI 10.1103/PhysRevLett.67.1602. BUTLER WH, 1985, PHYS REV B, V31, P3260, DOI 10.1103/PhysRevB.31.3260. CALLEN HB, 1963, PHYS REV, V130, P890, DOI 10.1103/PhysRev.130.890. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566. Cheng XM, 2003, J APPL PHYS, V93, P7876, DOI 10.1063/1.1556125. Chiba D, 2003, APPL PHYS LETT, V82, P3020, DOI 10.1063/1.1571666. Coey JMD, 2005, NAT MATER, V4, P173, DOI 10.1038/nmat1310. Dalpian GM, 2006, SOLID STATE COMMUN, V138, P353, DOI 10.1016/j.ssc.2006.03.002. DEGENNES PG, 1962, J PHYS-PARIS, V23, P630, DOI 10.1051/jphysrad:019620023010063000. DEGENNES PG, 1960, PHYS REV, V118, P141, DOI 10.1103/PhysRev.118.141. Dietl T, 2000, SCIENCE, V287, P1019, DOI 10.1126/science.287.5455.1019. Dimitrov DA, 1996, PHYS REV B, V54, P9237, DOI 10.1103/PhysRevB.54.9237. Dinh VA, 2005, J ELECTRON MICROSC, V54, pI61, DOI 10.1093/jmicro/dfi014. Dinh VA, 2005, SOLID STATE COMMUN, V136, P1, DOI 10.1016/j.ssc.2005.06.032. Dreizler R., 1995, DENSITY FUNCTIONAL T. DUCASTELLE F, 1976, J PHYS F MET PHYS, V6, P2039, DOI 10.1088/0305-4608/6/11/005. Ducastelle F., 1991, ORDER PHASE STABILIT. Dudarev SL, 1998, PHYS REV B, V57, P1505, DOI 10.1103/PhysRevB.57.1505. Edmonds KW, 2002, APPL PHYS LETT, V81, P3010, DOI 10.1063/1.1512822. Edmonds KW, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.037201. Edmonds KW, 2002, APPL PHYS LETT, V81, P4991, DOI 10.1063/1.1529079. EPICIER T, 1990, PHIL MAG LETT, V61, P285, DOI 10.1080/09500839008206368. ERIKSSON O, 2007, J APPL PHYS, V101. Erwin SC, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.227201. FAULKNER JS, 1980, PHYS REV B, V21, P3222, DOI 10.1103/PhysRevB.21.3222. Filippetti A, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.125109. Fukumura T, 2004, APPL SURF SCI, V223, P62, DOI 10.1016/S0169-4332(03)00898-5. Fukumura T, 2001, APPL PHYS LETT, V78, P958, DOI 10.1063/1.1348323. Fukushima T, 2006, PHYS STATUS SOLIDI A, V203, P2751, DOI 10.1002/pssa.200669608. Fukushima T, 2006, JPN J APPL PHYS 2, V45, pL416, DOI 10.1143/JJAP.45.L416. Fukushima T, 2004, JPN J APPL PHYS 2, V43, pL1416, DOI 10.1143/JJAP.43.L1416. Fukushima T, 2007, J PHYS SOC JPN, V76, DOI 10.1143/JPSJ.76.094713. Galanakis I, 2006, J PHYS D APPL PHYS, V39, P765, DOI 10.1088/0022-3727/39/5/S01. GALANAKIS I, 2005, HALF METALLIC ALLOYS, P12. Gijs MAM, 1997, ADV PHYS, V46, P285, DOI 10.1080/00018739700101518. Glas F, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.086107. Gonis A., 2000, THEORETICAL MAT SCI. GOODENOUGH JB, 1955, PHYS REV, V100, P564, DOI 10.1103/PhysRev.100.564. Gopal P, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.094418. GREENWOOD DA, 1958, P PHYS SOC LOND, V71, P585, DOI 10.1088/0370-1328/71/4/306. Gu L, 2005, J MAGN MAGN MATER, V290, P1395, DOI 10.1016/j.jmmm.2004.11.446. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HALDANE FDM, 1976, PHYS REV B, V13, P2553, DOI 10.1103/PhysRevB.13.2553. Harrison W. A., 1989, ELECT STRUCTURE PROP. Hellsvik J, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.144419. Hilbert S, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.165203. Hilbert S, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.113204. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. Iusan D, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.235208. Jamet M, 2006, NAT MATER, V5, P653, DOI 10.1038/nmat1686. Janisch R, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.035201. Janisch R, 2005, J PHYS-CONDENS MAT, V17, pR657, DOI 10.1088/0953-8984/17/27/R01. Janotti A, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.165202. Jung SW, 2002, APPL PHYS LETT, V80, P4561, DOI 10.1063/1.1487927. Jungwirth T, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.165204. Jungwirth T, 2006, REV MOD PHYS, V78, P809, DOI 10.1103/RevModPhys.78.809. KANAMORI J, 1959, J PHYS CHEM SOLIDS, V10, P87, DOI 10.1016/0022-3697(59)90061-7. Kanamori J, 2001, J PHYS SOC JPN, V70, P1433, DOI 10.1143/JPSJ.70.1433. Katayama-Yoshida H, 2007, PHYS STATUS SOLIDI A, V204, P15, DOI 10.1002/pssa.200673021. Katayama-Yoshida H, 2007, J MAGN MAGN MATER, V310, P2070, DOI 10.1016/j.jmmm.2006.10.1120. Katayama-Yoshida H., 1987, International Journal of Modern Physics B, V1, P1207, DOI 10.1142/S0217979287001699. Katayama-Yoshida H, 2008, APPL PHYS EXPRESS, V1, DOI 10.1143/APEX.1.081703. KATAYAMAYOSHIDA H, 1986, PHYS REV B, V33, P2961, DOI 10.1103/PhysRevB.33.2961. KATAYAMAYOSHIDA H, 1985, PHYS REV LETT, V55, P1618, DOI 10.1103/PhysRevLett.55.1618. KATAYAMAYOSHIDA H, 1985, PHYS REV B, V31, P8317, DOI 10.1103/PhysRevB.31.8317. KATAYAMAYOSHIDA H, 1985, PHYS REV B, V31, P7877, DOI 10.1103/PhysRevB.31.7877. KATAYAMAYOSHIDA H, 1984, PHYS REV LETT, V53, P1256, DOI 10.1103/PhysRevLett.53.1256. Katsnelson MI, 2000, PHYS REV B, V61, P8906, DOI 10.1103/PhysRevB.61.8906. Kawazoe H, 1997, NATURE, V389, P939, DOI 10.1038/40087. KIRKPATRICK S, 1973, REV MOD PHYS, V45, P574, DOI 10.1103/RevModPhys.45.574. Kittel C., 1987, QUANTUM THEORY SOLID. Kittilstved KR, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.147209. Kizaki H, 2006, PHYSICA B, V376, P812, DOI 10.1016/j.physb.2005.12.203. Kizaki H, 2005, JPN J APPL PHYS 2, V44, pL1187, DOI 10.1143/JJAP.44.L1187. Kobayashi M, 2007, J SUPERCOND NOV MAGN, V20, P467, DOI 10.1007/s10948-007-0287-7. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. Kolesnik S, 2004, J APPL PHYS, V96, P5379, DOI 10.1063/1.1755428. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. Kramers HA, 1934, PHYSICA, V1, P182, DOI 10.1016/S0031-8914(34)90023-9. KUBO R, 1957, J PHYS SOC JPN, V12, P570, DOI 10.1143/JPSJ.12.570. Kudrnovsky J, 2007, APPL PHYS LETT, V91, DOI 10.1063/1.2778468. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. Kudrnovsky J, 2003, J SUPERCOND, V16, P119, DOI 10.1023/A:1023257306608. Kundaliya DC, 2004, NAT MATER, V3, P709, DOI 10.1038/nmat1221. Kunisu M, 2005, APPL PHYS LETT, V86, DOI 10.1063/1.1885175. Kuroda S, 2007, NAT MATER, V6, P440, DOI 10.1038/nmat1910. Landau D. P., 2000, GUIDE MONTE CARLO SI. LEVIEN L, 1980, AM MINERAL, V65, P920. Levy PM, 1998, PHYS REV B, V58, P5588, DOI 10.1103/PhysRevB.58.5588. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. LOWITZER S, 2007, VERHANDL, V71, P437. Luo X, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.035212. Macdonald AH, 2005, NAT MATER, V4, P195, DOI 10.1038/nmat1325. Mahadevan P, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.177201. Mahadevan P, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115211. Masek J, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.067202. Masek J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.165212. Matsukura F, 1998, PHYS REV B, V57, pR2037, DOI 10.1103/PhysRevB.57.R2037. Matsukura F, 2002, HANDB MAG M, V14, P1, DOI 10.1016/S1567-2719(09)60005-6. METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114. Mikkelsen A, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.085411. Mirbt S, 2002, J PHYS-CONDENS MAT, V14, P3295, DOI 10.1088/0953-8984/14/12/316. OGUCHI T, 1983, J PHYS F MET PHYS, V13, P145, DOI 10.1088/0305-4608/13/1/018. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. Ohno H, 1998, SCIENCE, V281, P951, DOI 10.1126/science.281.5379.951. Ohno Y, 1999, NATURE, V402, P790. Okabayashi J, 1999, PHYS REV B, V59, pR2486, DOI 10.1103/PhysRevB.59.R2486. OSHIYAMA A, 1988, PHYS REV B, V37, P1395, DOI 10.1103/PhysRevB.37.1395. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. Ozaki N, 2004, PHYS STATUS SOLIDI C, V1, P957, DOI 10.1002/pssc.200304201. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Pearton SJ, 2004, SEMICOND SCI TECH, V19, pR59, DOI 10.1088/0268-1242/19/10/R01. Pemmaraju CD, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.054428. PERDEW JP, 1986, PHYS REV B, V33, P8800, DOI 10.1103/PhysRevB.33.8800. PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048. Petit L, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.045107. Ploog KH, 2003, J VAC SCI TECHNOL B, V21, P1756, DOI 10.1116/1.1588649. Prinz GA, 1998, SCIENCE, V282, P1660, DOI 10.1126/science.282.5394.1660. Priour DJ, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.165203. Ruban AV, 2008, REP PROG PHYS, V71, DOI 10.1088/0034-4885/71/4/046501. Ruban AV, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.054402. Ruban AV, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.024201. Rusz J, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.214412. Saito H, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.207202. Sandratskii LM, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.045203. Sandratskii LM, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.195203. Sandratskii LM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.134435. Sarigiannidou E, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.041306. Sato K, 2006, PHYSICA B, V376, P639, DOI 10.1016/j.physb.2005.12.161. Sato K, 2004, J PHYS-CONDENS MAT, V16, pS5491, DOI 10.1088/0953-8984/16/48/003. Sato K, 2005, JPN J APPL PHYS 2, V44, pL948, DOI 10.1143/JJAP.44.L948. Sato K, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.201202. Sato K, 2003, EUROPHYS LETT, V61, P403, DOI 10.1209/epl/i2003-00191-8. Sato K, 2002, SEMICOND SCI TECH, V17, P367, DOI 10.1088/0268-1242/17/4/309. Sato K, 2001, JPN J APPL PHYS 2, V40, pL651, DOI 10.1143/JJAP.40.L651. Sato K, 2001, JPN J APPL PHYS 2, V40, pL485, DOI 10.1143/JJAP.40.L485. Sato K, 2001, JPN J APPL PHYS 2, V40, pL334, DOI 10.1143/JJAP.40.L334. Sato K, 2000, JPN J APPL PHYS 2, V39, pL555, DOI 10.1143/JJAP.39.L555. SATO K, 2007, 28 INT C PHYS SEM IC. Sato K, 2007, JPN J APPL PHYS 2, V46, pL1120, DOI 10.1143/JJAP.46.L1120. Sato K, 2007, JPN J APPL PHYS 2, V46, pL682, DOI 10.1143/JJAP.46.L682. Sato K, 2007, J PHYS SOC JPN, V76, DOI 10.1143/JPSJ.76.024717. Schulthess TC, 2007, J PHYS-CONDENS MAT, V19, DOI 10.1088/0953-8984/19/16/165207. Schulthess TC, 2005, NAT MATER, V4, P838, DOI 10.1038/nmat1509. Sharma P, 2003, NAT MATER, V2, P673, DOI 10.1038/nmat984. SHI ZP, 1994, PHYS REV B, V49, P15159, DOI 10.1103/PhysRevB.49.15159. SHIBA H, 1971, PROG THEOR PHYS, V46, P77, DOI 10.1143/PTP.46.77. Shick AB, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.125207. Sluiter MHF, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.187204. Spaldin NA, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.125201. Stauffer D., 1994, INTRO PERCOLATION TH. STAUNTON J, 1985, J PHYS F MET PHYS, V15, P1387, DOI 10.1088/0305-4608/15/6/019. Sullivan JM, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.144415. SWENDSEN RH, 1987, PHYS REV LETT, V58, P86, DOI 10.1103/PhysRevLett.58.86. Tay M, 2006, J APPL PHYS, V100, DOI 10.1063/1.2348632. Thompson SM, 2008, J PHYS D APPL PHYS, V41, DOI 10.1088/0022-3727/41/9/093001. Timm C, 2003, J PHYS-CONDENS MAT, V15, pR1865, DOI 10.1088/0953-8984/15/50/R03. Toyoda M, 2006, PHYSICA B, V376, P647, DOI 10.1016/j.physb.2005.12.163. Tuomisto F, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.055505. TURCHI PEA, 1988, PHYS REV B, V37, P5982, DOI 10.1103/PhysRevB.37.5982. Turek I., 2006, Advances in Science and Technology, V52, P1, DOI 10.4028/www.scientific.net/AST.52.1. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I., 1997, ELECT STRUCTURE DISO. Vaithyanathan V, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.125503. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614. VELICKY B, 1968, PHYS REV, V175, P747, DOI 10.1103/PhysRev.175.747. Wang FG, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.056101. Webster P. J., 1988, ALLOYS COMPOUNDS ELE, P75. Weinberger P., 1990, ELECT SCATTERING THE. Wierzbowska M, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.235209. Wolf SA, 2001, SCIENCE, V294, P1488, DOI 10.1126/science.1065389. WOLFF U, 1989, PHYS REV LETT, V62, P361, DOI 10.1103/PhysRevLett.62.361. WYCKOFF RWG, 1963, CRYST STRUCT, V1, P111. Yamamoto T, 1997, JPN J APPL PHYS 2, V36, pL180, DOI 10.1143/JJAP.36.L180. YU JL, 2005, PHYS REV LETT, V94. Yuasa S, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2236268. ZENER C, 1951, PHYS REV, V82, P403, DOI 10.1103/PhysRev.82.403. ZENER C, 1951, PHYS REV, V81, P440, DOI 10.1103/PhysRev.81.440. Zhang J, 2005, J APPL PHYS, V97, DOI 10.1063/1.1845858. ZUNGER A, 1990, PHYS REV LETT, V65, P353, DOI 10.1103/PhysRevLett.65.353. Zunger A., 1986, SOLID STATE PHYS, V39, P275. Zutic I, 2004, REV MOD PHYS, V76, P323, DOI 10.1103/RevModPhys.76.323.}",
	number-of-cited-references = "{222}",
	times-cited = "{465}}, Usage-Count-(Last-180-days) = {{24}",
	usage-count-since-2013 = "{237}",
	journal-iso = "{Rev. Mod. Phys.}",
	doc-delivery-number = "{603SX}",
	unique-id = "{ISI:000278229500001}"
}

Karel Carva and Ilja Turek. Out-of-plane spin-transfer torques: First-principles study. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 322(9-12):1085-1087, 2010. 4th Joint European Magnetic Symposia (JEMS 08), Dublin, IRELAND, SEP 14-19, 2008. BibTeX

@article{ ISI:000275746100012,
	author = "Carva, Karel and Turek, Ilja",
	title = "{Out-of-plane spin-transfer torques: First-principles study}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2010}",
	volume = "{322}",
	number = "{9-12}",
	pages = "{1085-1087}",
	month = "{MAY-JUN}",
	note = "{4th Joint European Magnetic Symposia (JEMS 08), Dublin, IRELAND, SEP 14-19, 2008}",
	organization = "{Sci Fdn Ireland}",
	abstract = "{Spin-transfer torques in layered structures are studied with particular attention to their direction. Their direction is in spin valves determined mainly by the properties of the free layer and its interfaces. Situations which lead to a significant component of the torque in the direction perpendicular to both magnetizations present in the spin valve (out-of-plane torque) are described and analyzed. This component may arise from the transmitted spin current, as is demonstrated for a Cu vertical bar Ni vertical bar Cu(001) based system, or from the reflected spin current, which is found to be particularly high for systems with Cr vertical bar Co2MnSi interface. Ab initio calculations were performed for these systems employing the local spin density approximation (LSDA) and the linear muffin-tin orbital (LMTO) method. Information about the direction of the torque was obtained from the spin-mixing conductance. (C) 2008 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Carva, K (Reprint Author), Charles Univ Prague, Dept Condensed Matter Phys, Fac Math \& Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic. Carva, Karel; Turek, Ilja, Charles Univ Prague, Dept Condensed Matter Phys, Fac Math \& Phys, CZ-12116 Prague 2, Czech Republic. Carva, Karel, Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, SE-75121 Uppsala, Sweden. Turek, Ilja, Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1016/j.jmmm.2009.03.005}",
	issn = "{0304-8853}",
	eissn = "{1873-4766}",
	keywords = "{Spin-transfer torque; Magnetization reversal; Spin-mixing conductance; Ab initio calculation}",
	keywords-plus = "{MAGNETIC MULTILAYERS}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 }",
	cited-references = "{Barnas J, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.024426. Brataas A, 2006, PHYS REP, V427, P157, DOI 10.1016/j.physrep.2006.01.001. Carva K, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.104409. Carva K, 2008, PHYS STATUS SOLIDI A, V205, P1805, DOI 10.1002/pssa.200723620. EDWARDS ED, 2005, PHYS REV B, V71, P4407. Ralph DC, 2008, J MAGN MAGN MATER, V320, P1190, DOI 10.1016/j.jmmm.2007.12.019. Slonczcwski JC, 2002, J MAGN MAGN MATER, V247, P324, DOI 10.1016/S0304-8853(02)00291-3. Slonczewski JC, 2007, J MAGN MAGN MATER, V310, P169, DOI 10.1016/j.jmmm.2006.10.507. Slonczewski JC, 1996, J MAGN MAGN MATER, V159, pL1, DOI 10.1016/0304-8853(96)00062-5. Stiles MD, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014407. Theodonis I, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.237205. Wang S, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.184430. Zwierzycki M, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.064420.}",
	number-of-cited-references = "{13}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{7}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{571IS}",
	unique-id = "{ISI:000275746100012}"
}

M Ondracek, O Bengone, J Kudrnovsky, V Drchal, F Maca and I Turek. Magnetic phase stability of monolayers: Fe on a TaxW1-x(001) random alloy as a case study. PHYSICAL REVIEW B 81(6), Únor 2010. BibTeX

@article{ ISI:000274998100061,
	author = "Ondracek, M. and Bengone, O. and Kudrnovsky, J. and Drchal, V. and Maca, F. and Turek, I.",
	title = "{Magnetic phase stability of monolayers: Fe on a TaxW1-x(001) random alloy as a case study}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2010}",
	volume = "{81}",
	number = "{6}",
	month = "{FEB}",
	abstract = "{We present an approach to study the magnetic phase stability of magnetic overlayers on nonmagnetic substrates. The exchange integrals among magnetic atoms in the overlayer are estimated in the framework of the adiabatic approximation and used to construct the effective classical two-dimensional Heisenberg Hamiltonian. Its stability is then studied with respect to a large number of collinear and noncollinear magnetic arrangements which include, as special cases, not only ferromagnetic and various antiferromagnetic configurations but also possible incommensurate spin-spiral structures. This allows us to investigate a broader class of systems than a conventional total energy search based on few, subjectively chosen configurations. As a case study we consider the Fe monolayer on the random nonmagnetic bcc-TaxW1-x(001) surface which was studied recently by a conventional approach. We have found a crossover of the ground state of the Fe monolayer from the ferromagnet on the Ta surface to the c(2 x 2) antiferromagnet on the W surface and that at the composition with about 20\% of Ta an incommensurate magnetic configuration might exist.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Ondracek, M (Reprint Author), ASCR, Inst Phys, Cukrovarnicka 10, CZ-16200 Prague 6, Czech Republic. Ondracek, M., ASCR, Inst Phys, CZ-16200 Prague 6, Czech Republic. Bengone, O., IPCMS, F-67034 Strasbourg 2, France. Kudrnovsky, J.; Drchal, V.; Maca, F., ASCR, Inst Phys, CZ-18221 Prague 8, Czech Republic. Turek, I., ASCR, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.81.064410}",
	article-number = "{064410}",
	issn = "{1098-0121}",
	keywords-plus = "{EXCHANGE INTERACTIONS; ELECTRONIC-STRUCTURE; TRANSITION-METALS; CURIE-TEMPERATURE; SURFACE; ORDER}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Ondracek, Martin/A-1871-2012 Maca, Frantisek/G-4467-2014 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	funding-acknowledgement = "{Academy of Sciences of the Czech Republic {[}AV0Z10100520, AV0Z10100521, AV0Z20410507, A100100616]; Czech Science Foundation {[}202/07/0456, 202/09/0775]; COST P19 {[}OC09028]; ANR of France {[}ANR-06-NANO-053-01]}",
	funding-text = "{The research was carried out within the projects under Grants No. AV0Z10100520, No. AV0Z10100521, and No. AV0Z20410507 of the Academy of Sciences of the Czech Republic. Financial support was provided by the Grant Agency of the Academy of Sciences of the Czech Republic (Project No. A100100616), Czech Science Foundation (Projects No. 202/07/0456 and No. 202/09/0775), and COST P19 (OC09028). O. B. would like to acknowledge funding support from the ANR of France, Grant No. ANR-06-NANO-053-01.}",
	cited-references = "{BIEBER A, 1991, J MAGN MAGN MATER, V99, P293, DOI 10.1016/0304-8853(91)90077-N. Bode M, 2007, NATURE, V447, P190, DOI 10.1038/nature05802. Ferriani P, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.187203. Ferriani P, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.027201. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HEINE V, 1981, J PHYS F MET PHYS, V11, P2645, DOI 10.1088/0305-4608/11/12/015. HEINE V, 1983, J PHYS F MET PHYS, V13, P2155, DOI 10.1088/0305-4608/13/10/025. Hyldgaard P, 2000, J PHYS-CONDENS MAT, V12, pL13, DOI 10.1088/0953-8984/12/1/103. Kodderitzsch D, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.064434. Kubetzka A, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.087204. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. KUDRNOVSKY J, 1993, PHYS REV B, V47, P16525, DOI 10.1103/PhysRevB.47.16525. Kurz P, 2002, J PHYS-CONDENS MAT, V14, P6353, DOI 10.1088/0953-8984/14/25/305. LAU KH, 1978, SURF SCI, V75, P69, DOI 10.1016/0039-6028(78)90053-5. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Mazzarello R, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.134402. Novak P, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.184433. OGUCHI T, 1983, J PHYS F MET PHYS, V13, P145, DOI 10.1088/0305-4608/13/1/018. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. Ruban AV, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.125115. Shick AB, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.054413. SKRIVER HL, 1992, PHYS REV B, V46, P7157, DOI 10.1103/PhysRevB.46.7157. Spisak D, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.235405. Szunyogh L, 1998, PHILOS MAG B, V78, P617, DOI 10.1080/13642819808206768. Turchi PEA, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.094206. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{28}",
	times-cited = "{7}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{561SB}",
	unique-id = "{ISI:000274998100061}"
}

J Kudrnovsky, V Drchal and I Turek. First-principles study of properties of semi-Heusler (Cu,Ni)MnSb alloys. In G Goll, HV Lohneysen, A Loidl, T Pruschke, M Richter, L Schultz, C Surgers and J Wosnitza (eds.). INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009) 200. 2010. International Conference on Magnetism (ICM 2009), Karlsruhe, GERMANY, JUL 26-31, 2009. BibTeX

@inproceedings{ ISI:000291321301167,
	author = "Kudrnovsky, J. and Drchal, V. and Turek, I.",
	editor = "{Goll, G and Lohneysen, HV and Loidl, A and Pruschke, T and Richter, M and Schultz, L and Surgers, C and Wosnitza, J}",
	title = "{First-principles study of properties of semi-Heusler (Cu,Ni)MnSb alloys}",
	booktitle = "{INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009)}",
	series = "{Journal of Physics Conference Series}",
	year = "{2010}",
	volume = "{200}",
	note = "{International Conference on Magnetism (ICM 2009), Karlsruhe, GERMANY, JUL 26-31, 2009}",
	abstract = "{Magnetic properties, Curie temperatures, and transport properties of semi-Heusler alloys Cu(x)Ni(1-x)MnSb are calculated as a function of the alloy composition from first-principles. The transition from the ferromagnetic state (NiMnSb) to the antiferromagnetic state (CuMnSb) gives rise to an abrupt change in the concentration dependence of magnetic moments and resistivity at about x = 0.7 while the Curie temperatures decrease monotonically with the Cu-content. Such behaviour can be understood as due to the onset of disorder in orientations of Mn-spins at x = 0.7. A simple account of magnetic disorder as based on the uncompensated disordered local moment picture provides also a good quantitative explanation of available experimental data.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, Slovance 2, CZ-18221 Prague, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague, Czech Republic.}",
	doi = "{10.1088/1742-6596/200/3/032036}",
	article-number = "{UNSP 032036}",
	issn = "{1742-6588}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. DUCASTELLE F, 1993, ORDER PHASE STABILIT. FISHER ME, 1968, PHYS REV LETT, V20, P665, DOI 10.1103/PhysRevLett.20.665. KUBLER J, 1983, PHYS REV B, V28, P1745, DOI 10.1103/PhysRevB.28.1745. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. PHYS GI, 2005, J ALLOY COMPD, V71, P32. Sasioglu E, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.064417. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{9}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{13}",
	doc-delivery-number = "{BVE58}",
	unique-id = "{ISI:000291321301167}"
}

I Turek and T Zalezak. Residual resistivity and its anisotropy in random CoNi and CuNi ferromagnetic alloys. In G Goll, HV Lohneysen, A Loidl, T Pruschke, M Richter, L Schultz, C Surgers and J Wosnitza (eds.). INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009) 200. 2010. International Conference on Magnetism (ICM 2009), Karlsruhe, GERMANY, JUL 26-31, 2009. BibTeX

@inproceedings{ ISI:000291321302073,
	author = "Turek, I. and Zalezak, T.",
	editor = "{Goll, G and Lohneysen, HV and Loidl, A and Pruschke, T and Richter, M and Schultz, L and Surgers, C and Wosnitza, J}",
	title = "{Residual resistivity and its anisotropy in random CoNi and CuNi ferromagnetic alloys}",
	booktitle = "{INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009)}",
	series = "{Journal of Physics Conference Series}",
	year = "{2010}",
	volume = "{200}",
	note = "{International Conference on Magnetism (ICM 2009), Karlsruhe, GERMANY, JUL 26-31, 2009}",
	organization = "{Univ Karlsruhe; Forschungszentrum Karlsruhe; Int Union Pure \& Appl Phys; City Karlsruhe; German Natl Sci Fdn; European Commission COST MPNS}",
	abstract = "{Residual resistivities of random CoNi and CuNi ferromagnetic alloys are calculated by a recently developed ab initio technique based on the linear muffin-tin orbital (LMTO) method with perturbative inclusion of spin-orbit interaction. The obtained results compare well with those of existing fully relativistic techniques. Particular attention has been paid to the isotropic resistivity and the spontaneous magnetoresistance anisotropy; a high value of the resistance anisotropy is predicted for Ni-rich CoNi alloys.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, Brno 61662, Czech Republic. Turek, I.; Zalezak, T., Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic.}",
	doi = "{10.1088/1742-6596/200/5/052029}",
	article-number = "{052029}",
	issn = "{1742-6588}",
	keywords-plus = "{SYSTEMS}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Zalezak, Tomas/G-3021-2014 Turek, Ilja/G-5553-2014}",
	cited-references = "{Banhart J, 1997, PHYS REV B, V56, P10165, DOI 10.1103/PhysRevB.56.10165. BUTLER WH, 1985, PHYS REV B, V31, P3260, DOI 10.1103/PhysRevB.31.3260. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Crepieux A, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.014416. Ebert H, 1996, PHYS REV B, V54, P8479, DOI 10.1103/PhysRevB.54.8479. Khmelevskyi S, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.012402. KOELLING DD, 1977, J PHYS C SOLID STATE, V10, P3107, DOI 10.1088/0022-3719/10/16/019. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2008, PHILOS MAG, V88, P2787, DOI 10.1080/14786430802232553. Turek I., 1997, ELECT STRUCTURE DISO. Vernes A, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.134404. Weinberger P., 1990, ELECT SCATTERING THE.}",
	number-of-cited-references = "{13}",
	times-cited = "{7}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{5}",
	doc-delivery-number = "{BVE58}",
	unique-id = "{ISI:000291321302073}"
}

K Carva and I Turek. Landauer theory of ballistic torkances in noncollinear spin valves. PHYSICAL REVIEW B 80(10), Září 2009. BibTeX

@article{ ISI:000270383100075,
	author = "Carva, K. and Turek, I.",
	title = "{Landauer theory of ballistic torkances in noncollinear spin valves}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2009}",
	volume = "{80}",
	number = "{10}",
	month = "{SEP}",
	abstract = "{We present a theory of voltage-induced spin-transfer torques in ballistic noncollinear spin valves. The torkance on one ferromagnetic layer is expressed in terms of scattering coefficients of the whole spin valve, in analogy to the Landauer conductance formula. The theory is applied to Co/Cu/Ni(001)-based systems where long-range oscillations of the Ni torkance as a function of Ni thickness are predicted. The oscillations represent a novel quantum size effect due to the noncollinear magnetic structure. The oscillatory behavior of the torkance contrasts a thickness-independent trend of the conductance.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Carva, K (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic. Carva, K.; Turek, I., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CZ-12116 Prague 2, Czech Republic. Carva, K., Uppsala Univ, Dept Phys \& Mat Sci, SE-75121 Uppsala, Sweden. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.80.104432}",
	article-number = "{104432}",
	issn = "{1098-0121}",
	keywords-plus = "{MAGNETIC MULTILAYERS; TORQUES}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 }",
	funding-acknowledgement = "{Ministry of Education of the Czech Republic {[}MSM0021620834]; Academy of Sciences of the Czech Republic {[}KJB101120803, KAN400100653]}",
	funding-text = "{This work has been supported by the Ministry of Education of the Czech Republic (Grant No. MSM0021620834) and by the Academy of Sciences of the Czech Republic (Grants No. KJB101120803 and No. KAN400100653).}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Arrachea L, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.245322. Berger L, 1996, PHYS REV B, V54, P9353, DOI 10.1103/PhysRevB.54.9353. Brataas A, 2006, PHYS REP, V427, P157, DOI 10.1016/j.physrep.2006.01.001. Carva K, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.104409. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Carva K, 2008, PHYS STATUS SOLIDI A, V205, P1805, DOI 10.1002/pssa.200723620. DATTA S, 1995, ELECT TRANSPORT MESO, P14403. Edwards DM, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.054407. HANCY PM, 2007, PHYS REV B, V76, P4403. HAUG H, 1996, QUANTUM KINETICS TRA, P14403. Heiliger C, 2008, J APPL PHYS, V103, DOI 10.1063/1.2835071. Heiliger C, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.186805. Katine JA, 2000, PHYS REV LETT, V84, P3149, DOI 10.1103/PhysRevLett.84.3149. Kudrnovsky J, 1996, PHYS REV B, V53, P5125, DOI 10.1103/PhysRevB.53.5125. LANDAUER R, 1970, PHILOS MAG, V21, P863, DOI 10.1080/14786437008238472. Myers EB, 1999, SCIENCE, V285, P867, DOI 10.1126/science.285.5429.867. Ralph DC, 2008, J MAGN MAGN MATER, V320, P1190, DOI 10.1016/j.jmmm.2007.12.019. Slonczewski JC, 2007, J MAGN MAGN MATER, V310, P169, DOI 10.1016/j.jmmm.2006.10.507. Slonczewski JC, 1996, J MAGN MAGN MATER, V159, pL1, DOI 10.1016/0304-8853(96)00062-5. Stiles MD, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014407. Theodonis I, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.237205. TUREK I, 1997, ELECT STRUCTURE DISO, P14403. Waintal X, 2000, PHYS REV B, V62, P12317, DOI 10.1103/PhysRevB.62.12317. Wang S, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.184430. Xu Y, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.226602.}",
	number-of-cited-references = "{26}",
	times-cited = "{5}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{501LJ}",
	unique-id = "{ISI:000270383100075}"
}

Josef Kudrnovsky, Frantisek Maca, Ilja Turek and Josef Redinger. Substrate-induced antiferromagnetism of a Fe monolayer on the Ir(001) surface. PHYSICAL REVIEW B 80(6), Srpen 2009. BibTeX

@article{ ISI:000269638800034,
	author = "Kudrnovsky, Josef and Maca, Frantisek and Turek, Ilja and Redinger, Josef",
	title = "{Substrate-induced antiferromagnetism of a Fe monolayer on the Ir(001) surface}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2009}",
	volume = "{80}",
	number = "{6}",
	month = "{AUG}",
	abstract = "{We present detailed ab initio study of structural and magnetic stability of a Fe monolayer on the fcc(001) surface of iridium. The Fe monolayer has a strong tendency to order antiferromagnetically for the true relaxed geometry. On the contrary an unrelaxed Fe/Ir(001) sample has a ferromagnetic ground state. The antiferromagnetism is thus stabilized by the decreased Fe-Ir layer spacing in striking contrast to the recently experimentally observed antiferromagnetism of the Fe/W(001) system which exists also for an ideal bulk-truncated, unrelaxed geometry. The calculated layer relaxations for Fe/Ir(001) agree reasonably well with recent experimental low-energy electron diffraction data. The present study centers around the evaluation of pair exchange interactions between Fe atoms in the Fe overlayer as a function of the Fe/Ir interlayer distance which allows for a detailed understanding of the antiferromagnetism of a Fe/Ir(001) overlayer. Furthermore, our calculations indicate that the nature of the true ground state could be more complex and display a spin spiral like rather than a c(2x2)-antiferromagnetic order. Finally, the magnetic stability of the Fe monolayer on the Ir(001) surface is compared to the closely related Fe/Rh(001) system.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Inst Phys ASCR, Slovance 2, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, Josef; Maca, Frantisek, Inst Phys ASCR, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, Josef; Maca, Frantisek, Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany. Turek, Ilja, Inst Phys Mat ASCR, CZ-61662 Brno, Czech Republic. Redinger, Josef, Vienna Univ Technol, Dept Gen Phys, A-1060 Vienna, Austria.}",
	doi = "{10.1103/PhysRevB.80.064405}",
	article-number = "{064405}",
	issn = "{1098-0121}",
	keywords = "{ab initio calculations; antiferromagnetic materials; exchange interactions (electron); ground states; iridium; iron; low energy electron diffraction; magnetic thin films; monolayers}",
	keywords-plus = "{EXCHANGE INTERACTIONS; ELECTRON-GAS; CURIE-TEMPERATURE; ALLOYS; ENERGY; FERROMAGNETS; OVERLAYERS; METALS; W(001); STATE}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Maca, Frantisek/G-4467-2014 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	funding-acknowledgement = "{ASCR {[}AV0Z1-010-0520, AV0Z2-041-0507]; Grant Agency of the Czech Republic {[}202/07/0456, 202/09/0775, COST P19-OC-09028]}",
	funding-text = "{This work has been done within the project AV0Z1-010-0520 and AV0Z2-041-0507 of the ASCR. The authors acknowledge fruitful discussions with J. Kirschner, D. Sander, and Z. Tian and the support from the Grant Agency of the Czech Republic under Contracts No. 202/07/0456, No. 202/09/0775 and No. COST P19-OC-09028 project.}",
	cited-references = "{AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. Blaha P., 2001, WIEN2K AUGMENTED PLA. CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566. CHRISTMANN K, 1988, SURF SCI REP, V9, P1, DOI 10.1016/0167-5729(88)90009-X. Ferriani P, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.024452. Ferriani P, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.187203. Ferriani P, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.027201. Hortamani M, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.104402. Hwang CY, 1999, PHYS REV B, V60, P14429, DOI 10.1103/PhysRevB.60.14429. Hyldgaard P, 2000, J PHYS-CONDENS MAT, V12, pL13, DOI 10.1088/0953-8984/12/1/103. Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169. Kresse G, 1999, PHYS REV B, V59, P1758, DOI 10.1103/PhysRevB.59.1758. Kubetzka A, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.087204. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. Kudrnovsky J, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.054441. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Martin V, 2007, Physical Review B (Condensed Matter and Materials Physics), V76, DOI 10.1103/PhysRevB.76.205418. Ondracek M, 2007, SURF SCI, V601, P4261, DOI 10.1016/j.susc.2007.04.125. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. Perdew JP, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.136406. PERDEW JP, 1992, PHYS REV B, V45, P13244, DOI 10.1103/PhysRevB.45.13244. PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048. Shick AB, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.054413. SKRIVER HL, 1992, PHYS REV B, V46, P7157, DOI 10.1103/PhysRevB.46.7157. Spisak D, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.195426. STAUNTON J, 1985, J PHYS F MET PHYS, V15, P1387, DOI 10.1088/0305-4608/15/6/019. Stepanyuk VS, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.205410. Szunyogh L, 1998, PHILOS MAG B, V78, P617, DOI 10.1080/13642819808206768. Tian Z, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.024432. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224431. Turek I, 2000, LECT NOTES PHYS, V535, P349. Udvardi L, 2008, PHYSICA B, V403, P402, DOI 10.1016/j.physb.2007.08.060. WANG Y, 1991, PHYS REV B, V44, P13298, DOI 10.1103/PhysRevB.44.13298. WU RQ, 1992, PHYS REV B, V45, P7532, DOI 10.1103/PhysRevB.45.7532.}",
	number-of-cited-references = "{36}",
	times-cited = "{19}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{6}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{492EX}",
	unique-id = "{ISI:000269638800034}"
}

Y Jiraskova, K Zabransky, I Turek, J Bursik and D Jancik. Microstructure and physical properties of mechanically alloyed Fe-Mo powder. JOURNAL OF ALLOYS AND COMPOUNDS 477(1-2):55-61, 2009. BibTeX

@article{ ISI:000266386400024,
	author = "Jiraskova, Y. and Zabransky, K. and Turek, I. and Bursik, J. and Jancik, D.",
	title = "{Microstructure and physical properties of mechanically alloyed Fe-Mo powder}",
	journal = "{JOURNAL OF ALLOYS AND COMPOUNDS}",
	year = "{2009}",
	volume = "{477}",
	number = "{1-2}",
	pages = "{55-61}",
	month = "{MAY 27}",
	abstract = "{Solid-state reactions in Fe(74)Mo(26) powder mixture induced by mechanical alloying (MA) are followed by (57)Fe Mossbauer spectroscopy supported by additional experimental methods. It is established that a bcc-Fe(Mo) solid solution with an enhanced Mo content substantially exceeding the equilibrium solubility limit, a bcc-Mo(Fe) solid solution, and an amorphous and/or highly defected phase have been formed during the MA. The mean particle size of 100 nm is obtained at the end of milling process. Surface regions of the particles are formed by the amorphous phase containing also iron grains smaller than 20 nm, as proved by transmission electron microscopy and selective area electron diffraction. A varying composition of FeMo powder samples and grain refinement are reflected in changes of hyperfine interactions and macroscopic magnetic characteristics. (C) 2008 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE SA}",
	address = "{PO BOX 564, 1001 LAUSANNE, SWITZERLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Jiraskova, Y (Reprint Author), Acad Sci Czech Republic, Inst Phys Met, Zizkova 22, CZ-61662 Brno, Czech Republic. Jiraskova, Y.; Zabransky, K.; Turek, I.; Bursik, J., Acad Sci Czech Republic, Inst Phys Met, CZ-61662 Brno, Czech Republic. Jancik, D., Palacky Univ, Fac Sci, Ctr Nanomat Res, CZ-78371 Olomouc, Czech Republic.}",
	doi = "{10.1016/j.jallcom.2008.11.006}",
	issn = "{0925-8388}",
	keywords = "{Nanostructured materials; Mechanical alloying; Microstructure; Magnetic measurements; Mossbauer spectroscopy}",
	keywords-plus = "{MAGNETIC-PROPERTIES; NANOCRYSTALLINE ALLOYS; MOSSBAUER; TEMPERATURE; TRANSITION; BEHAVIOR}",
	research-areas = "{Chemistry; Materials Science; Metallurgy \& Metallurgical Engineering}",
	web-of-science-categories = "{Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy \& Metallurgical Engineering}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Jiraskova, Yvonna/E-3682-2012 Bursik, Jiri/B-8684-2013 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Bursik, Jiri/0000-0002-6749-9788 }",
	funding-acknowledgement = "{Czech Science Foundation {[}202/05/2111, 106/05/1-1008]; Ministry of Education, Youth and Sports of the Czech Republic {[}1M6198959201]; Institute Research Plan {[}AV0Z20410507]}",
	funding-text = "{The authors thank to Dr. M. Vujtek (Centre for Nanomaterial Research, Olomouc, CZ) for AFM measurements and for financial support of the Czech Science Foundation (202/05/2111 and 106/05/1-1008), of the Ministry of Education, Youth and Sports of the Czech Republic (No. 1M6198959201) and of Institute Research Plan (AV0Z20410507).}",
	cited-references = "{AKAI H, 1986, PHYS REV LETT, V56, P2407, DOI 10.1103/PhysRevLett.56.2407. AKIYAMA S, 1991, IEEE T MAGN, V27, P5094, DOI 10.1109/20.278751. CHIEN CL, 1978, J APPL PHYS, V49, P1721, DOI 10.1063/1.324846. EWARDS JW, 1951, J APPL PHYS, V22, P424. Franco V, 2001, J NON-CRYST SOLIDS, V287, P366, DOI 10.1016/S0022-3093(01)00598-1. FUCHS A, 1965, ACTA CRYSTALLOGR, V19, P488, DOI 10.1107/S0365110X65003742. Idzikowski B, 1998, J MAGN MAGN MATER, V177, P941, DOI 10.1016/S0304-8853(97)00639-2. Jartych E, 2002, J ALLOY COMPD, V337, P69, DOI 10.1016/S0925-8388(01)01959-4. KALVIUS GM, 1974, J PHYSIQUE C, V35, P139. KOHLHAAS R, 1967, Z ANGEW PHYSIK, V23, P245. KUYAMA J, 1991, JAP J POWDERS POWDER, V7, P61. Li Y, 2001, CHEM MATER, V13, P1008, DOI 10.1021/cm000787s. MARCUS HL, 1967, J APPL PHYS, V38, P4750, DOI 10.1063/1.1709214. Massalski T.B., 1990, BINARY ALLOY PHASE D, P1726. Miglierini M, 2007, PHYS MET METALLOGR+, V104, P335, DOI 10.1134/S0031918X07100031. Miglierini M, 2003, J PHYS-CONDENS MAT, V15, P5637, DOI 10.1088/0953-8984/15/32/323. Miglierini M, 2003, J MAGN MAGN MATER, V265, P243, DOI 10.1016/S0304-8853(03)00272-5. Moumeni H, 2006, J ALLOY COMPD, V419, P140, DOI 10.1016/j.jallcom.2006.03.040. MYUNG WN, 1991, MAT SCI ENG A-STRUCT, V133, P418, DOI 10.1016/0921-5093(91)90100-2. NIELSEN HJV, 1979, SOLID STATE COMMUN, V30, P239, DOI 10.1016/0038-1098(79)90343-0. NIELSEN HJV, 1980, J MAGN MAGN MATER, V19, P138. Pavuk M, 2007, J PHYS-CONDENS MAT, V19, DOI 10.1088/0953-8984/19/21/216219. SCHAAF P, 1994, HYPERFINE INTERACT, V94, P2239, DOI 10.1007/BF02063769. Schoonman J, 2000, SOLID STATE IONICS, V135, P5, DOI 10.1016/S0167-2738(00)00324-6. SUMIYAMA K, 1987, J PHYS CHEM SOLIDS, V48, P255, DOI 10.1016/0022-3697(87)90021-7. Turek I., 1997, ELECT STRUCTURE DISO. VINCZE I, 1973, J PHYS F MET PHYS, V3, P647, DOI 10.1088/0305-4608/3/3/023. YOSHIZAWA Y, 1991, MAT SCI ENG A-STRUCT, V133, P176, DOI 10.1016/0921-5093(91)90043-M. Young R. A., 1993, RIETVELD METHOD INT. Zak T, 2006, SURF INTERFACE ANAL, V38, P710, DOI 10.1002/sia.2285.}",
	number-of-cited-references = "{30}",
	times-cited = "{12}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{7}",
	journal-iso = "{J. Alloy. Compd.}",
	doc-delivery-number = "{450FM}",
	unique-id = "{ISI:000266386400024}"
}

M Divis and I Turek. Electronic structure and magnetism of MnFeP1-xSix alloys from first-principles calculations. PHYSICA B-CONDENSED MATTER 403(18):3276-3278, 2008. BibTeX

@article{ ISI:000259626500057,
	author = "Divis, M. and Turek, I.",
	title = "{Electronic structure and magnetism of MnFeP1-xSix alloys from first-principles calculations}",
	journal = "{PHYSICA B-CONDENSED MATTER}",
	year = "{2008}",
	volume = "{403}",
	number = "{18}",
	pages = "{3276-3278}",
	month = "{SEP 1}",
	abstract = "{First-principles calculations of electronic structure and magnetic properties based on density-functional theory were performed for MnFeP1-xSix (0.44 <= x <= 0.60) alloys which are considered as promising magnetocaloric refrigerants. We used the full-potential APW+lo method and treated the random order of P(Si) atoms in the ZrNiAl-type structure in a virtual-crystal approximation. A non-monotonic behavior of the alloy magnetization as a function of x was obtained, in qualitative agreement with experiment, and explained in terms of the spin-polarized densities of states. (C) 2008 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Divis, M (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Ke Karlovu 5, CR-12116 Prague 2, Czech Republic. Divis, M.; Turek, I., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CR-12116 Prague 2, Czech Republic.}",
	doi = "{10.1016/j.physb.2008.04.016}",
	issn = "{0921-4526}",
	keywords = "{intermetallic compounds; magnetocaloric effect; bandstructure calculations}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	funding-acknowledgement = "{Ministry of Education of the Czech Republic {[}Plan MSM0021620834]; Czech Science Foundation {[}106/06/0368]}",
	funding-text = "{This work is a part of the research Plan MSM0021620834 financed by the Ministry of Education of the Czech Republic. Financial support of the Czech Science Foundation under Grant no. 106/06/0368 is gratefully acknowledged. The authors wish to thank to V. Sechovsky, D.T. Cam Thanh and E. Bruck for fruitful discussions and help with the preparation of the manuscript.}",
	cited-references = "{AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. Blaha P., 2001, WIEN2K. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. PERDEW JP, 1992, PHYS REV B, V45, P13244, DOI 10.1103/PhysRevB.45.13244. Tegus O, 2002, NATURE, V415, P150, DOI 10.1038/415150a. Thanh DTC, 2008, J APPL PHYS, V103, DOI 10.1063/1.2836958.}",
	number-of-cited-references = "{6}",
	times-cited = "{4}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{19}",
	journal-iso = "{Physica B}",
	doc-delivery-number = "{354GI}",
	unique-id = "{ISI:000259626500057}"
}

Karel Carva and Ilja Turek. Spin-mixing conductances: The influence of disorder. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE 205(8):1805-1808, Srpen 2008. 3rd Seeheim Conference on Magnetism (SCM2007), Frankfurt, GERMANY, AUG 26-30, 2007. BibTeX

@article{ ISI:000258863700016,
	author = "Carva, Karel and Turek, Ilja",
	title = "{Spin-mixing conductances: The influence of disorder}",
	journal = "{PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE}",
	year = "{2008}",
	volume = "{205}",
	number = "{8}",
	pages = "{1805-1808}",
	month = "{AUG}",
	note = "{3rd Seeheim Conference on Magnetism (SCM2007), Frankfurt, GERMANY, AUG 26-30, 2007}",
	abstract = "{Spin transfer torque exerted on a magnetic layer can be viewed as a linear response to the spin accumulation inside an adjacent non-magnetic layer, information about their response coefficient is provided by the complex spin-mixing conductance C-mix. Substitutional disorder is known to affect the spin-dependent charge conductances and often reduces strongly the magnetoresistance. Here, we examine its impact on C-mix of several selected realistic systems. Recently predicted oscillations of C-mix as a function of ferromagnetic layer thickness in Ni based junctions might be suppressed by interface interdiffusion, but presented ab initio calculations disprove this possibility. Halfmetallic character of the Heusler compound Co(2)Mnsi is destroyed by often encountered antisite disorder; however the impact of this disorder to the predicted C-mix is rather weak. Diluted magnetic semiconductor (Ga,Mn)As is an intrinsically disordered system the analysis of calculations shows that the variation of C-mix with substitutional Mn content can be understood in terms of the associated change of the number of carriers, whereas the variation with lattice defects is more complex.}",
	publisher = "{WILEY-V C H VERLAG GMBH}",
	address = "{POSTFACH 101161, 69451 WEINHEIM, GERMANY}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Carva, K (Reprint Author), Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, POB 530, S-75121 Uppsala, Sweden. Carva, Karel, Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, S-75121 Uppsala, Sweden. Carva, Karel; Turek, Ilja, Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CR-12116 Prague 2, Czech Republic.}",
	doi = "{10.1002/pssa.200723620}",
	issn = "{1862-6300}",
	eissn = "{1862-6319}",
	keywords-plus = "{MAGNETIC SEMICONDUCTORS; AB-INITIO; ALLOYS}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 }",
	cited-references = "{Brataas A, 2006, PHYS REP, V427, P157, DOI 10.1016/j.physrep.2006.01.001. Carva K, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.104409. Carva K, 2008, ACTA PHYS POL A, V113, P183. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Gantmakher V. F., 2005, ELECT DISORDER SOLID. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. Kudrnovsky J, 2003, J SUPERCOND, V16, P119, DOI 10.1023/A:1023257306608. Kudrnovsky J, 1996, PHYS REV B, V53, P5125, DOI 10.1103/PhysRevB.53.5125. Sakuraba Y, 2006, APPL PHYS LETT, V88, DOI 10.1063/1.2202724. Slonczewski JC, 1996, J MAGN MAGN MATER, V159, pL1, DOI 10.1016/0304-8853(96)00062-5. SOVEN P, 1967, PHYS REV, V156, P809, DOI 10.1103/PhysRev.156.809. Turek I., 2006, Advances in Science and Technology, V52, P1, DOI 10.4028/www.scientific.net/AST.52.1. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017. Turek I., 1997, ELECT STRUCTURE DISO. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614.}",
	number-of-cited-references = "{15}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{10}",
	journal-iso = "{Phys. Status Solidi A-Appl. Mat.}",
	doc-delivery-number = "{343OP}",
	unique-id = "{ISI:000258863700016}"
}

J Kudrnovsky, V Drchal, I Turek and P Weinberger. Electronic, magnetic, and transport properties and magnetic phase transition in quaternary (Cu,Ni)MnSb Heusler alloys. PHYSICAL REVIEW B 78(5), Srpen 2008. BibTeX

@article{ ISI:000259368200097,
	author = "Kudrnovsky, J. and Drchal, V. and Turek, I. and Weinberger, P.",
	title = "{Electronic, magnetic, and transport properties and magnetic phase transition in quaternary (Cu,Ni)MnSb Heusler alloys}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2008}",
	volume = "{78}",
	number = "{5}",
	month = "{AUG}",
	abstract = "{The electronic properties, finite-temperature magnetism, and transport properties of semi-Heusler quaternary alloys (Cu,Ni)MnSb are studied theoretically by means of ab initio calculations as a function of the alloy composition. As documented by experiment, the transition from the ferromagnetic state (NiMnSb) to the antiferromagnetic state (CuMnSb) gives rise to an abrupt change in the magnetic moments and resistivities at about x(Cu) approximate to 0.7, while the Curie temperature exhibits a smooth behavior with the Cu content. We explain this peculiar behavior with the onset of disorder in orientations of the Mn spins at xC approximate to 0.7. A-simple account of magnetic disorder based on the so-called uncompensated disordered local-moment picture provides a good quantitative understanding of available experimental data. An origin of the observed magnetic phase transition is also discussed.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J.; Drchal, V., Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J., Max Planck Inst, Inst Mikrostrukturphys, D-06120 Halle, Germany. Turek, I., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CZ-12116 Prague 2, Czech Republic. Weinberger, P., Ctr Computat Nanosci, A-1010 Vienna, Austria.}",
	doi = "{10.1103/PhysRevB.78.054441}",
	article-number = "{054441}",
	issn = "{1098-0121}",
	keywords-plus = "{EXCHANGE INTERACTIONS; CUXNI1-XMNSB; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	funding-acknowledgement = "{Academy of Sciences of the Czech Republic {[}10100520]; Grant Agency of the Academy of Sciences of the Czech Republic {[}A100100616]; Czech Science Foundation {[}202/07/0456]; COST P19 {[}OC150]; Ministry of Education of the Czech Republic {[}0021620834]}",
	funding-text = "{This study was carried out within the project AVOZ (Project No. 10100520) of the Academy of Sciences of the Czech Republic. J.K. and V.D. acknowledge the financial support from the Grant Agency of the Academy of Sciences of the Czech Republic (Grant No. A100100616), the Czech Science Foundation (Grant No. 202/07/0456), and COST P19 (Grant No. OC150). The work of I.T. is part of research program MSM (Project No. 0021620834) financed by the Ministry of Education of the Czech Republic.}",
	cited-references = "{Alling B, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.064418. ANDERSON PW, 1961, PHYS REV, V124, P41, DOI 10.1103/PhysRev.124.41. Balke B, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.104405. Boeuf J, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.024428. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. DUCASTELLE F, 1993, ORDER PHASE STABILIT, P53102. ENDO K, 1968, J PHYS SOC JPN, V25, P907, DOI 10.1143/JPSJ.25.907. FISHER ME, 1968, PHYS REV LETT, V20, P665, DOI 10.1103/PhysRevLett.20.665. Galanakis I, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.214417. GALANAKIS PH, 2002, PHYS REV B, V66, P3102. Jeong T, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.184103. KUBLER J, 1983, PHYS REV B, V28, P1745, DOI 10.1103/PhysRevB.28.1745. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Ren SK, 2005, J MAGN MAGN MATER, V288, P276, DOI 10.1016/j.jmmm.2004.09.107. Ren SK, 2005, J ALLOY COMPD, V387, P32, DOI 10.1016/j.jallcom.2004.06.063. Rusz J, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.214412. Sandratskii LM, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.184406. Sasioglu E, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.024427. SASIOGLU E, 2006, APPL PHYS LETT, V89, P53102. Shick AB, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.125207. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2000, LECT NOTES PHYS, V535, P349. TUREK I, 1997, ELECT STRUCTURE DISO, P53102. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WEBSTER PJ, 1988, LANDOLTBORNSTEIN C 2, V19, P53102.}",
	number-of-cited-references = "{28}",
	times-cited = "{22}}, Usage-Count-(Last-180-days) = {{3}",
	usage-count-since-2013 = "{24}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{350QM}",
	unique-id = "{ISI:000259368200097}"
}

M Zwierzycki, P A Khomyakov, A A Starikov, K Xia, M Talanana, P X Xu, V M Karpan, I Marushchenko, I Turek, G E W Bauer, G Brocks and P J Kelly. Calculating scattering matrices by wave function matching. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS 245(4):623-640, Duben 2008. BibTeX

@article{ ISI:000255201500001,
	author = "Zwierzycki, M. and Khomyakov, P. A. and Starikov, A. A. and Xia, K. and Talanana, M. and Xu, P. X. and Karpan, V. M. and Marushchenko, I. and Turek, I. and Bauer, G. E. W. and Brocks, G. and Kelly, P. J.",
	title = "{Calculating scattering matrices by wave function matching}",
	journal = "{PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS}",
	year = "{2008}",
	volume = "{245}",
	number = "{4}",
	pages = "{623-640}",
	month = "{APR}",
	abstract = "{The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn-Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered inter-faces. (C) 2008 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim.}",
	publisher = "{WILEY-V C H VERLAG GMBH}",
	address = "{BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY}",
	type = "{Review}",
	language = "{English}",
	affiliation = "{Zwierzycki, M (Reprint Author), Polish Acad Sci, Inst Mol Phys, Smoluchowskiego 17, PL-60179 Poznan, Poland. Zwierzycki, M., Polish Acad Sci, Inst Mol Phys, PL-60179 Poznan, Poland. Khomyakov, P. A.; Starikov, A. A.; Talanana, M.; Xu, P. X.; Karpan, V. M.; Marushchenko, I.; Brocks, G.; Kelly, P. J., Univ Twente, Fac Sci \& Technol, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. Xia, K., Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic. Bauer, G. E. W., Delft Univ Technol, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands.}",
	doi = "{10.1002/pssb.200743359}",
	issn = "{0370-1972}",
	keywords-plus = "{DIFFERENCE-PSEUDOPOTENTIAL METHOD; ELECTRONIC-STRUCTURE CALCULATIONS; MAGNETIC DOMAIN-WALLS; TIGHT-BINDING THEORY; ATOMIC WIRES; GIANT MAGNETORESISTANCE; SPIN POLARIZATION; TUNNELING MAGNETORESISTANCE; METALLIC MULTILAYERS; ANDREEV REFLECTION}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Brocks, Geert/B-7919-2015 Xu, Pengxiang/C-7213-2008 Bauer, Gerrit/F-8273-2010 Kelly, Paul/G-4210-2010 Starikov, Anton/F-8525-2011 Khomyakov, Petr/L-4550-2013 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Bauer, Gerrit/0000-0002-3615-8673 Kelly, Paul/0000-0001-9040-1868 }",
	cited-references = "{Agrait N, 2003, PHYS REP, V377, P81, DOI 10.1016/S0370-1573(02)00633-6. ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. ANDERSEN OK, 1986, PHYS REV B, V34, P5253, DOI 10.1103/PhysRevB.34.5253. ANDERSEN OK, 1985, ENR FERM VAR IT N HO, P59. ANDO T, 1991, PHYS REV B, V44, P8017, DOI 10.1103/PhysRevB.44.8017. Ashcroft N. W., 1976, SOLID STATE PHYS. Bagrets A, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.235448. Bass J, 1999, J MAGN MAGN MATER, V200, P274, DOI 10.1016/S0304-8853(99)00316-9. Bauer GEW, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.155304. Bauer GEW, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.126601. Beenakker CWJ, 1997, REV MOD PHYS, V69, P731, DOI 10.1103/RevModPhys.69.731. Bengone O, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.035302. Bland J.A.C., 1994, ULTRATHIN MAGNETIC S. BLONDER GE, 1982, PHYS REV B, V25, P4515, DOI 10.1103/PhysRevB.25.4515. Brandbyge M, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.165401. Brataas A, 2006, PHYS REP, V427, P157, DOI 10.1016/j.physrep.2006.01.001. BRUNO P, 1993, J MAGN MAGN MATER, V121, P248, DOI 10.1016/0304-8853(93)91197-F. Butler WH, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.054416. CAROLI C, 1971, J PHYS PART C SOLID, V4, P916, DOI 10.1088/0022-3719/4/8/018. CHELIKOWSKY JR, 1994, PHYS REV LETT, V72, P1240, DOI 10.1103/PhysRevLett.72.1240. CHELIKOWSKY JR, 1994, PHYS REV B, V50, P11355, DOI 10.1103/PhysRevB.50.11355. CRAMPIN S, 1992, J PHYS-CONDENS MAT, V4, P1475, DOI 10.1088/0953-8984/4/6/012. Datta S., 1995, ELECT TRANSPORT MESO. Faleev SV, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.195422. FISHER DS, 1981, PHYS REV B, V23, P6851, DOI 10.1103/PhysRevB.23.6851. Fujimoto Y, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.195315. Galinon C, 2005, APPL PHYS LETT, V86, DOI 10.1063/1.1920421. Hatami M, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.066603. Havu P, 2006, J CHEM PHYS, V124, DOI 10.1063/1.2162900. Herper HC, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.184442. INGLESFIELD JE, 1981, J PHYS C SOLID STATE, V14, P3795, DOI 10.1088/0022-3719/14/26/015. JULLIERE M, 1975, PHYS LETT A, V54, P225, DOI 10.1016/0375-9601(75)90174-7. Khomyakov PA, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.035450. Khomyakov PA, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.195402. Khomyakov PA, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.165416. KRANS JM, 1995, NATURE, V375, P767, DOI 10.1038/375767a0. KUBLER J, 2002, THEORY ITINERANT ELE. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Lang ND, 1997, PHYS REV LETT, V79, P1357, DOI 10.1103/PhysRevLett.79.1357. LANG ND, 1995, PHYS REV B, V52, P5335, DOI 10.1103/PhysRevB.52.5335. Lee HW, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.075306. LEE SF, 1993, J MAGN MAGN MATER, V118, pL1, DOI 10.1016/0304-8853(93)90147-T. Li ZY, 2006, J PHYS-CONDENS MAT, V18, P1347, DOI 10.1088/0953-8984/18/4/019. MacLaren JM, 1999, PHYS REV B, V59, P5470, DOI 10.1103/PhysRevB.59.5470. MacLaren JM, 1997, PHYS REV B, V56, P11827, DOI 10.1103/PhysRevB.56.11827. MacLaren JM, 1998, J APPL PHYS, V83, P6521, DOI 10.1063/1.367568. Mathon J, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.220402. Mathon J, 1999, PHYS REV B, V60, P1117, DOI 10.1103/PhysRevB.60.1117. Mathon J, 1997, PHYS REV B, V56, P11810, DOI 10.1103/PhysRevB.56.11810. Mathon J, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.220403. Mathon J, 1997, PHYS REV B, V55, P960, DOI 10.1103/PhysRevB.55.960. Mavropoulos P, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.125104. MAVROPOULOS P, 2004, PHYS REV B, V66. Mazin II, 2001, J APPL PHYS, V89, P7576, DOI 10.1063/1.1357127. Mazin II, 1999, PHYS REV LETT, V83, P1427, DOI 10.1103/PhysRevLett.83.1427. Ohnishi H, 1998, NATURE, V395, P780, DOI 10.1038/27399. Ono T, 1999, PHYS REV LETT, V82, P5016, DOI 10.1103/PhysRevLett.82.5016. Palacios JJ, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.035322. Parkin SSP, 2004, NAT MATER, V3, P862, DOI 10.1038/nmat1256. Riedel I, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.195403. Rocha AR, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.085414. Sanvito S, 1999, PHYS REV B, V59, P11936, DOI 10.1103/PhysRevB.59.11936. Schep KM, 1997, PHYS REV B, V56, P10805, DOI 10.1103/PhysRevB.56.10805. Schep KM, 1998, PHYS REV B, V57, P8907, DOI 10.1103/PhysRevB.57.8907. Soulen RJ, 1998, SCIENCE, V282, P85, DOI 10.1126/science.282.5386.85. SOVEN P, 1967, PHYS REV, V156, P809, DOI 10.1103/PhysRev.156.809. STILES MD, 1991, PHYS REV LETT, V66, P3179, DOI 10.1103/PhysRevLett.66.3179. STILES MD, 1993, PHYS REV B, V48, P7238, DOI 10.1103/PhysRevB.48.7238. Stiles MD, 1996, J APPL PHYS, V79, P5805, DOI 10.1063/1.362195. Stiles MD, 2000, PHYS REV B, V61, P3200, DOI 10.1103/PhysRevB.61.3200. STILES MD, 1988, PHYS REV B, V38, P2021, DOI 10.1103/PhysRevB.38.2021. TALANA M, 2006, THESIS U TWENTE. Taylor J, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.245407. Thygesen KS, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.115404. Tsymbal EY, 1997, J PHYS-CONDENS MAT, V9, pL411, DOI 10.1088/0953-8984/9/30/002. Turek I., 1997, ELECT STRUCTURE DISO. Upadhyay SK, 1998, PHYS REV LETT, V81, P3247, DOI 10.1103/PhysRevLett.81.3247. van Hoof JBAN, 1998, J MAGN MAGN MATER, V177, P188, DOI 10.1016/S0304-8853(97)00800-7. van Hoof JBAN, 1999, PHYS REV B, V59, P138, DOI 10.1103/PhysRevB.59.138. VANHOOF JBA, 1997, THESIS U NIJMEGEN NI. Weinberger P, 2003, PHYS REP, V377, P281, DOI 10.1016/S0370-1573(02)00600-2. Wortmann D, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.075113. Wortmann D, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.165103. Wunnicke O, 2004, J PHYS-CONDENS MAT, V16, P4643, DOI 10.1088/0953-8984/16/26/001. Wunnicke O, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.064425. Wunnicke O, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.241306. Xia K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.064420. Xia K, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.166603. Xia K, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.220401. Xia K, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.064407. Xu PX, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.180402. Xu PX, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.176602. Yamaguchi F, 1997, SOLID STATE COMMUN, V102, P779, DOI 10.1016/S0038-1098(97)00100-2. Yanson AI, 1998, NATURE, V395, P783. Yazdani A, 1996, SCIENCE, V272, P1921, DOI 10.1126/science.272.5270.1921. Yuasa S, 2004, NAT MATER, V3, P868, DOI 10.1038/nmat1257. Yuasa S, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2236268. ZHANG SF, 1991, J APPL PHYS, V69, P4786, DOI 10.1063/1.348229. Zhang XG, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.172407. Zwierzycki M, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.064420. Zwierzycki M, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.092401.}",
	number-of-cited-references = "{102}",
	times-cited = "{23}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{14}",
	journal-iso = "{Phys. Status Solidi B-Basic Solid State Phys.}",
	doc-delivery-number = "{291MM}",
	unique-id = "{ISI:000255201500001}"
}

I Turek and K Carva. Spin-mixing conductances of Ni-based films attached to Cu(100) leads. ACTA PHYSICA POLONICA A 113(1):11-14, Leden 2008. 13th Czech and Slovak Conference on Magnetism (CSMAG'07), Kosice, SLOVAKIA, JUL 09-12, 2007. BibTeX

@article{ ISI:000253324800003,
	author = "Turek, I. and Carva, K.",
	title = "{Spin-mixing conductances of Ni-based films attached to Cu(100) leads}",
	journal = "{ACTA PHYSICA POLONICA A}",
	year = "{2008}",
	volume = "{113}",
	number = "{1}",
	pages = "{11-14}",
	month = "{JAN}",
	note = "{13th Czech and Slovak Conference on Magnetism (CSMAG'07), Kosice, SLOVAKIA, JUL 09-12, 2007}",
	abstract = "{The complex spin-mixing conductance of epitaxial Cu/Ni/Cu(100) systems is predicted to oscillate as a function of Ni thickness. The oscillation period is explained in terms of spin-resolved Fermi surface properties of bulk nickel. Stability of the oscillations with respect to interface Cu-Ni interdiffusion and to alloying in the Ni film is investigated as well.}",
	publisher = "{POLISH ACAD SCIENCES INST PHYSICS}",
	address = "{AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, Brno 61662, Czech Republic. Turek, I., Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic. Carva, K., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CR-12116 Prague 2, Czech Republic.}",
	issn = "{0587-4246}",
	keywords-plus = "{TRANSPORT}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 }",
	cited-references = "{Brataas A, 2006, PHYS REP, V427, P157, DOI 10.1016/j.physrep.2006.01.001. Brataas A, 2000, PHYS REV LETT, V84, P2481, DOI 10.1103/PhysRevLett.84.2481. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Mertig I, 1999, REP PROG PHYS, V62, P237, DOI 10.1088/0034-4885/62/2/004. Turek I, 2007, J PHYS-CONDENS MAT, V19, DOI 10.1088/0953-8984/19/36/365203. TUREK I, 1997, ELECT STURCTURE DISO. Zwierzycki M, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.064420.}",
	number-of-cited-references = "{7}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Acta Phys. Pol. A}",
	doc-delivery-number = "{264XX}",
	unique-id = "{ISI:000253324800003}"
}

R Sykora and I Turek. Transmission and reflection of spin-polarized electrons propagating through a model domain wall. ACTA PHYSICA POLONICA A 113(1):15-18, Leden 2008. 13th Czech and Slovak Conference on Magnetism (CSMAG'07), Kosice, SLOVAKIA, JUL 09-12, 2007. BibTeX

@article{ ISI:000253324800004,
	author = "Sykora, R. and Turek, I.",
	title = "{Transmission and reflection of spin-polarized electrons propagating through a model domain wall}",
	journal = "{ACTA PHYSICA POLONICA A}",
	year = "{2008}",
	volume = "{113}",
	number = "{1}",
	pages = "{15-18}",
	month = "{JAN}",
	note = "{13th Czech and Slovak Conference on Magnetism (CSMAG'07), Kosice, SLOVAKIA, JUL 09-12, 2007}",
	abstract = "{An analytically tractable simple model of a magnetic domain wall in a ferromagnetic metal is considered and, assuming the ballistic regime of electronic transport, transmission and reflection coefficients of such a wall are calculated within the stationary scattering theory. It is rederived that for realistic values of electron energies and domain wall widths the transmission coefficient is very close to one and thus an ideal domain wall itself (i.e. not taking into account other aspects such as disorder) does not essentially represent a hindrance to the transport.}",
	publisher = "{POLISH ACAD SCIENCES INST PHYSICS}",
	address = "{AL LOTNIKOW 32-46, 02-668 WARSAW, POLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Sykora, R (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CR-12116 Prague 2, Czech Republic. Sykora, R.; Turek, I., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CR-12116 Prague 2, Czech Republic.}",
	issn = "{0587-4246}",
	keywords-plus = "{RESISTIVITY}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{Brataas A, 2006, PHYS REP, V427, P157, DOI 10.1016/j.physrep.2006.01.001. CABRERA GG, 1974, PHYS STATUS SOLIDI B, V61, P539, DOI 10.1002/pssb.2220610219. CHIKAZUMI S, 1964, PHYSICS MAGNETISM, P186. Hong KM, 1998, J PHYS-CONDENS MAT, V10, pL401, DOI 10.1088/0953-8984/10/24/001. Jonkers PAE, 1999, PHYS REV B, V60, P15970, DOI 10.1103/PhysRevB.60.15970. MAEKAWA S, 2006, SERIES SEMICONDUCTOR. Tatara G, 1997, PHYS REV LETT, V78, P3773, DOI 10.1103/PhysRevLett.78.3773.}",
	number-of-cited-references = "{7}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Acta Phys. Pol. A}",
	doc-delivery-number = "{264XX}",
	unique-id = "{ISI:000253324800004}"
}

K Carva and I Turek. Bulk and epitaxial CO2MnSi systems with antisite disorder: Ab initio calculations. ACTA PHYSICA POLONICA A 113(1):183-186, Leden 2008. 13th Czech and Slovak Conference on Magnetism (CSMAG'07), Kosice, SLOVAKIA, JUL 09-12, 2007. BibTeX

@article{ ISI:000253324800046,
	author = "Carva, K. and Turek, I.",
	title = "{Bulk and epitaxial CO2MnSi systems with antisite disorder: Ab initio calculations}",
	journal = "{ACTA PHYSICA POLONICA A}",
	year = "{2008}",
	volume = "{113}",
	number = "{1}",
	pages = "{183-186}",
	month = "{JAN}",
	note = "{13th Czech and Slovak Conference on Magnetism (CSMAG'07), Kosice, SLOVAKIA, JUL 09-12, 2007}",
	abstract = "{The intermetallic compound CO2MnSi is halfmetallic, but the structure of real samples is often affected by antisite disorder. The influence of disorder on transport properties is examined by ab initio calculations and is found to be more significant in thin CO2MnSi slabs sandwiched by metallic leads than in the bulk compound.}",
	publisher = "{POLISH ACAD SCIENCES INST PHYSICS}",
	address = "{AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Carva, K (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Ke Karlovu 5, Prague 12116 2, Czech Republic. Carva, K.; Turek, I., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Prague 12116 2, Czech Republic.}",
	issn = "{0587-4246}",
	eissn = "{1898-794X}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 }",
	cited-references = "{Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Ishida S, 1998, PHYSICA B, V245, P1, DOI 10.1016/S0921-4526(97)00495-X. RAVEL B, 2001, PHYS REV B, V65. Ritchie L, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.104430. Sakuraba Y, 2006, APPL PHYS LETT, V88, DOI 10.1063/1.2202724. Turek I, 2007, J PHYS-CONDENS MAT, V19, DOI 10.1088/0953-8984/19/36/365203. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{8}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Acta Phys. Pol. A}",
	doc-delivery-number = "{264XX}",
	unique-id = "{ISI:000253324800046}"
}

J Kudrnovsky, V Drchal, F Maca and I Turek. Electronic and magnetic properties of quaternary (Cu, Ni)MnSb alloys. PHILOSOPHICAL MAGAZINE 88(18-20):2739-2746, 2008. BibTeX

@article{ ISI:000261172500015,
	author = "Kudrnovsky, J. and Drchal, V. and Maca, F. and Turek, I.",
	title = "{Electronic and magnetic properties of quaternary (Cu, Ni)MnSb alloys}",
	journal = "{PHILOSOPHICAL MAGAZINE}",
	year = "{2008}",
	volume = "{88}",
	number = "{18-20}",
	pages = "{2739-2746}",
	abstract = "{Magnetic properties and Curie temperatures of semi-Heusler alloys Cu1-xNixMnSb are calculated as a function of the alloy composition. The transition from the ferromagnetic state (NiMnSb) to the antiferromagnetic state (CuMnSb) gives rise to an abrupt change in the concentration dependence of alloy magnetization at about xCu = 0.7 while the Curie temperature decreases monotonically with the Cu-content. Such behaviour can be understood as being due to the onset of disorder in orientations of Mn-spins at xCu = 0.7. A simple account of magnetic disorder as based on the uncompensated disorder local moment picture provides also a good quantitative understanding of available experimental data.}",
	publisher = "{TAYLOR \& FRANCIS LTD}",
	address = "{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Inst Phys AS CR, Slovance 2, CZ-18221 Prague 8, Czech Republic. Kudrnovsky, J.; Drchal, V.; Maca, F., Inst Phys AS CR, CZ-18221 Prague 8, Czech Republic. Turek, I., Inst Phys Mat AS CR, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1080/14786430802232546}",
	article-number = "{PII 901635495}",
	issn = "{1478-6435}",
	keywords = "{density functional theory; exchange interactions; effective Heisenberg model; magnetic disorder; Curie temperature; quaternary Heusler alloys}",
	keywords-plus = "{EXCHANGE INTERACTIONS; CUXNI1-XMNSB}",
	research-areas = "{Materials Science; Mechanics; Metallurgy \& Metallurgical Engineering; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mechanics; Metallurgy \& Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Maca, Frantisek/G-4467-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	funding-acknowledgement = "{Academy Sciences of the Czech Republic {[}A100100616]; Czech Science Foundation {[}202/07/0456]; COST P19 {[}OC150]; {[}AVOZ 10100520]; {[}AVOZ 20410507]}",
	funding-text = "{This research was carried out within the projects AVOZ 10100520 and AVOZ 20410507 of the Academy of Sciences of the Czech Republic. The authors acknowledge financial support from the Grant Agency of the Academy Sciences of the Czech Republic (A100100616), the Czech Science Foundation (202/07/0456), and COST P19 (OC150).}",
	cited-references = "{Balke B, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.104405. DUCASTELLE F, 1993, ORDER PHASE STABILIT. Galanakis I, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.174429. GALANAKIS I, ARXIV08011968, P84426. Jeong T, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.184103. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Ren SK, 2005, J MAGN MAGN MATER, V288, P276, DOI 10.1016/j.jmmm.2004.09.107. Ren SK, 2005, J ALLOY COMPD, V387, P32, DOI 10.1016/j.jallcom.2004.06.063. Rusz J, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.214412. Sasioglu E, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.024427. SASIOGLU E, 2006, APPL PHYS LETT, V89, P53102. Shick AB, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.125207. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. Webster P. J., 1988, ALLOYS COMPOUNDS D 2, V19.}",
	number-of-cited-references = "{17}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{10}",
	journal-iso = "{Philos. Mag.}",
	doc-delivery-number = "{376GQ}",
	unique-id = "{ISI:000261172500015}"
}

I Turek, V Drchal and J Kudrnovsky. Relativistic LMTO method for systems of light elements. PHILOSOPHICAL MAGAZINE 88(18-20):2787-2798, 2008. BibTeX

@article{ ISI:000261172500020,
	author = "Turek, I. and Drchal, V. and Kudrnovsky, J.",
	title = "{Relativistic LMTO method for systems of light elements}",
	journal = "{PHILOSOPHICAL MAGAZINE}",
	year = "{2008}",
	volume = "{88}",
	number = "{18-20}",
	pages = "{2787-2798}",
	abstract = "{This paper reviews the theoretical background of an approximate treatment of relativistic effects within the tight-binding (TB) linear muffin-tin orbital (LMTO) method for ab-initio electronic structure calculations of solids. The formalism employs two-component spinors and an orbital basis set of the scalar-relativistic approximation. The developed theory is applied to selected metallic systems and its results are compared to those of a fully relativistic TB-LMTO method.}",
	publisher = "{TAYLOR \& FRANCIS LTD}",
	address = "{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Ke Karlovu 5, CR-12116 Prague 2, Czech Republic. Turek, I., Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CR-12116 Prague 2, Czech Republic. Drchal, V.; Kudrnovsky, J., Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic.}",
	doi = "{10.1080/14786430802232553}",
	article-number = "{PII 901635534}",
	issn = "{1478-6435}",
	keywords = "{electronic structure calculations; density functional theory; relativistic effects; spin-orbit interaction; random alloys; itinerant magnetism}",
	keywords-plus = "{TIN-ORBITAL METHOD; ELECTRONIC-STRUCTURE; RANDOM ALLOYS; SURFACES}",
	research-areas = "{Materials Science; Mechanics; Metallurgy \& Metallurgical Engineering; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mechanics; Metallurgy \& Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	funding-acknowledgement = "{Ministry of Education of the Czech Republic; Czech Science Foundation {[}202/06/0178]; Academy of Sciences of the Czech Republic {[}A100100616]; COST P19 {[}OC150]; {[}10100520]}",
	funding-text = "{The work of I. T. is a part of the research program MSM 0021620834 financed by the Ministry of Education of the Czech Republic; partial support by the Czech Science Foundation (202/06/0178) is acknowledged as well. The work of V. D. and J.K. was carried out within the project AVOZ 10100520 of the Academy of Sciences of the Czech Republic and with financial support from the Grant Agency of the Academy of Sciences of the Czech Republic (A100100616) and COST P19 (OC150).}",
	cited-references = "{ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. BANHART J, 1995, EUROPHYS LETT, V32, P517, DOI 10.1209/0295-5075/32/6/010. DRCHAL V, 1994, PHYS REV B, V50, P7903, DOI 10.1103/PhysRevB.50.7903. KOELLING DD, 1977, J PHYS C SOLID STATE, V10, P3107, DOI 10.1088/0022-3719/10/16/019. MACDONALD AH, 1979, J PHYS C SOLID STATE, V12, P2977, DOI 10.1088/0022-3719/12/15/007. Mavropoulos P, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.054424. Shick AB, 1996, PHYS REV B, V54, P1610, DOI 10.1103/PhysRevB.54.1610. SOLOVYEV IV, 1991, PHYS REV B, V43, P14414, DOI 10.1103/PhysRevB.43.14414. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Zabloudil J., 2005, ELECT SCATTERING SOL.}",
	number-of-cited-references = "{13}",
	times-cited = "{17}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Philos. Mag.}",
	doc-delivery-number = "{376GQ}",
	unique-id = "{ISI:000261172500020}"
}

P Ferriani, I Turek, S Heinze, G Bihlmayer and S Bluegel. Magnetic phase control in monolayer films by substrate tuning. PHYSICAL REVIEW LETTERS 99(18), 2007. BibTeX

@article{ ISI:000250644000053,
	author = "Ferriani, P. and Turek, I. and Heinze, S. and Bihlmayer, G. and Bluegel, S.",
	title = "{Magnetic phase control in monolayer films by substrate tuning}",
	journal = "{PHYSICAL REVIEW LETTERS}",
	year = "{2007}",
	volume = "{99}",
	number = "{18}",
	month = "{NOV 2}",
	abstract = "{We propose tailoring exchange interactions in magnetic monolayer films by tuning the adjacent nonmagnetic substrate. As an example, we demonstrate a ferromagnetic-antiferromagnetic phase transition for one monolayer Fe on a Ta(x)W(1-x)(001) surface as a function of the Ta concentration. At the critical Ta concentration, the nearest-neighbor exchange interaction is small and the magnetic phase space is dramatically broadened. Complex magnetic order such as spin spirals, multiple-Q, or even disordered local moment states can occur, offering the possibility of storing information in terms of ferromagnetic dots in an otherwise zero-magnetization state matrix.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Ferriani, P (Reprint Author), Univ Hamburg, Inst Appl Phys, Jungiusstr 11, D-20355 Hamburg, Germany. Univ Hamburg, Inst Appl Phys, D-20355 Hamburg, Germany. Univ Hamburg, Microstruct Res Ctr, D-20355 Hamburg, Germany. Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany.}",
	doi = "{10.1103/PhysRevLett.99.187203}",
	article-number = "{187203}",
	issn = "{0031-9007}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bihlmayer, Gustav/G-5279-2013 Blugel, Stefan/J-8323-2013 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Bihlmayer, Gustav/0000-0002-6615-1122 Blugel, Stefan/0000-0001-9987-4733 }",
	cited-references = "{AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. Dunn JH, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.217202. Ferriani P, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.024452. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. Kubetzka A, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.087204. Kuch W, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.017201. Kuch W, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.140408. Kurz P, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.024415. Kurz P, 2001, PHYS REV LETT, V86, P1106, DOI 10.1103/PhysRevLett.86.1106. Moorjani K., 1984, MAGNETIC GLASSES. Offi F, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.064419. Ponomareva AV, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.064409. Sandratskii LM, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.014430. Skubic B, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.057205. Turchi PEA, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.075113. Turek I, 1998, PHYS REV B, V57, P11065. Turek I., 1997, ELECT STRUCTURE DISO. Von Bergmann K, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.167203. Zhang YK, 1998, PHYS REV LETT, V80, P890, DOI 10.1103/PhysRevLett.80.890.}",
	number-of-cited-references = "{19}",
	times-cited = "{15}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Phys. Rev. Lett.}",
	doc-delivery-number = "{227GA}",
	unique-id = "{ISI:000250644000053}"
}

I Turek and K Carva. Spin-mixing conductances of metallic and half-metallic magnetic layers. JOURNAL OF PHYSICS-CONDENSED MATTER 19(36), 2007. 1st International Conference on Quantum Simulators and Design, Hiroshima, JAPAN, DEC 03-06, 2006. BibTeX

@article{ ISI:000249255200004,
	author = "Turek, I. and Carva, K.",
	title = "{Spin-mixing conductances of metallic and half-metallic magnetic layers}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{2007}",
	volume = "{19}",
	number = "{36}",
	month = "{SEP 12}",
	note = "{1st International Conference on Quantum Simulators and Design, Hiroshima, JAPAN, DEC 03-06, 2006}",
	organization = "{Hiroshima Univ; Minist Educ, Culture, Sports Sci \& Technol}",
	abstract = "{The spin-mixing conductance of a thin ferromagnetic layer attached epitaxially to two semi-infinite non-magnetic metallic leads is formulated in terms of non-equilibrium Green's functions. The spin-mixing conductance is obtained as a response of the spin torque acting on the ferromagnet with respect to the spin accumulation in one of the leads, while the spin torque is defined as a time derivative of the spin magnetic moment. The equivalence of the derived formula with a previous expression of the Landauer-Buttiker scattering theory is sketched and an implementation within the ab initio tight-binding linear muffin-tin orbital method is briefly described. Applications are made for metallic Co- and Ni-based slabs embedded between Cu(111) leads and for half-metallic Co2MnSi films sandwiched by Cr(001) leads. The calculated results throw serious doubts on the general validity of two features: fast convergence of the spin-mixing conductance with increasing thickness of the magnetic layer and negligible values of the imaginary part of the spin-mixing conductance as compared to the real part.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CZ-12116 Prague 2, Czech Republic.}",
	doi = "{10.1088/0953-8984/19/36/365203}",
	article-number = "{365203}",
	issn = "{0953-8984}",
	keywords-plus = "{COHERENT-POTENTIAL APPROXIMATION; MULTILAYERS; TRANSPORT; ALLOYS; MAGNETORESISTANCE; 1ST-PRINCIPLES; REVERSAL; ELEMENT; SYSTEMS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 }",
	cited-references = "{AlHajDarwish M, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.157203. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Barnas J, 2006, MAT SCI ENG B-SOLID, V126, P271, DOI 10.1016/j.mseb.2005.09.016. Barnas J, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.024426. Bass J, 1999, J MAGN MAGN MATER, V200, P274, DOI 10.1016/S0304-8853(99)00316-9. Berger L, 1996, PHYS REV B, V54, P9353, DOI 10.1103/PhysRevB.54.9353. Brataas A, 2006, PHYS REP, V427, P157, DOI 10.1016/j.physrep.2006.01.001. Brataas A, 2001, EUR PHYS J B, V22, P99, DOI 10.1007/PL00011139. Brataas A, 2000, PHYS REV LETT, V84, P2481, DOI 10.1103/PhysRevLett.84.2481. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Datta S., 1995, ELECT TRANSPORT MESO. Drchal V, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.214414. Faleev SV, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.195422. Fert A, 2004, J MAGN MAGN MATER, V272, P1706, DOI 10.1016/j.jmmm.2003.12.1351. Galanakis I, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.174429. Haug H., 1996, QUANTUM KINETICS TRA. ISHIDA S, 1995, J PHYS SOC JPN, V64, P2152, DOI 10.1143/JPSJ.64.2152. Katine JA, 2000, PHYS REV LETT, V84, P3149, DOI 10.1103/PhysRevLett.84.3149. Kovalev AA, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.054407. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Maekawa S., 2006, CONCEPTS SPIN ELECT. Maekawa S., 2002, SPIN DEPENDENT TRANS. Sakuraba Y, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2335583. Slonczewski J.C., 1996, J MAGN MAGN MATER, V159, pL1, DOI DOI 10.1016/0304-8853(96)00062-5. Stiles MD, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014407. Tserkovnyak Y, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.117601. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. VALET T, 1993, PHYS REV B, V48, P7099, DOI 10.1103/PhysRevB.48.7099. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614. Waintal X, 2000, PHYS REV B, V62, P12317, DOI 10.1103/PhysRevB.62.12317. Wijn H. P. J., 1991, MAGNETIC PROPERTIES. Xia K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.064420. Xia K, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.220401. Zwierzycki M, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.064420.}",
	number-of-cited-references = "{37}",
	times-cited = "{5}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{6}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{207MM}",
	unique-id = "{ISI:000249255200004}"
}

J Kudrnovsky, G Bouzerar and I Turek. Relation of Curie temperature and conductivity: (Ga,Mn)As alloy as a case study. APPLIED PHYSICS LETTERS 91(10), 2007. BibTeX

@article{ ISI:000249322900046,
	author = "Kudrnovsky, J. and Bouzerar, G. and Turek, I.",
	title = "{Relation of Curie temperature and conductivity: (Ga,Mn)As alloy as a case study}",
	journal = "{APPLIED PHYSICS LETTERS}",
	year = "{2007}",
	volume = "{91}",
	number = "{10}",
	month = "{SEP 3}",
	abstract = "{Experimental investigations of diluted magnetic semiconductors indicate a strong relation between Curie temperature and conductivity. Both quantities depend nontrivially on the concentration of magnetic impurities, the carrier density, and the presence of compensating defects. The authors calculate both Curie temperature and conductivity of (Ga,Mn)As alloys in a self-consistent manner based on the same first-principles Hamiltonian in which the presence of compensating defects is taken into account. The effect of As antisites and Mn interstitials is determined separately, and a good agreement between theory and experiment exists only in the case where the dominating mechanism is due to the Mn interstitials. (C) 2007 American Institute of Physics.}",
	publisher = "{AMER INST PHYSICS}",
	address = "{CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. CNRS, MCBT, Inst Neel, F-38042 Grenoble, France. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1063/1.2778468}",
	article-number = "{102509}",
	issn = "{0003-6951}",
	keywords-plus = "{EXCHANGE INTERACTIONS; SEMICONDUCTORS; GA1-XMNXAS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Applied}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Bergqvist L, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.137202. Bouzerar G, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.125207. Bouzerar G, 2005, EUROPHYS LETT, V69, P812, DOI 10.1209/epl/i2004-10473-1. Bouzerar G, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.081203. Dietl T, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.195205. Edmonds KW, 2002, APPL PHYS LETT, V81, P4991, DOI 10.1063/1.1529079. FISHER ME, 1968, PHYS REV LETT, V20, P665, DOI 10.1103/PhysRevLett.20.665. Jungwirth T, 2002, APPL PHYS LETT, V81, P4029, DOI 10.1063/1.1523160. Jungwirth T, 2006, REV MOD PHYS, V78, P809, DOI 10.1103/RevModPhys.78.809. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Masek J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.165212. Sato K, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.201202. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I., 1997, ELECT STRUCTURE DISO. Wu RQ, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.207201.}",
	number-of-cited-references = "{18}",
	times-cited = "{6}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{4}",
	journal-iso = "{Appl. Phys. Lett.}",
	doc-delivery-number = "{208MH}",
	unique-id = "{ISI:000249322900046}"
}

Karel Carva and Ilja Turek. Ab initio theory of spin-transfer torques. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 316(2):E926-E929, Září 2007. Joint European Magnetic Symposia (JEMS 06), San Sebastian, SPAIN, JUN 26-29, 2006. BibTeX

@article{ ISI:000248150000350,
	author = "Carva, Karel and Turek, Ilja",
	title = "{Ab initio theory of spin-transfer torques}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2007}",
	volume = "{316}",
	number = "{2}",
	pages = "{E926-E929}",
	month = "{SEP}",
	note = "{Joint European Magnetic Symposia (JEMS 06), San Sebastian, SPAIN, JUN 26-29, 2006}",
	organization = "{Natl Advisory Comm}",
	abstract = "{We develop an ab initio material-specfic theory of current induced magnetization switching. The formulation is based on non-equilibrium Green's functions (NEGF) formalism applied to the so-called spin-mixing conductance, i.e., the linear response of the spin torque exerted on a magnetic layer to a spin accumulation in an adjacent non-magnetic layer. The numerical implementation employs the local spin density approximation (LSDA) and the linear muffin-tin orbital (LMTO) method. Possible substitutional disorder is treated using the coherent potential approximation (CPA) that allows for evaluation of the coherent (ballistic) and incoherent (diffusive) parts of the spin-mixing conductance. The developed scheme is applied to a few selected magnetic layers including systems containing diluted magnetic semiconductors and Heusler alloys. Their halfmetallic character leads to enhanced spin-mixing conductances with respect to charge conductances. (c) 2007 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Carva, K (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CZ-12116 Prague 2, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1016/j.jmmm.2007.03.154}",
	issn = "{0304-8853}",
	keywords = "{spin torque; magnetization reversal; spin accumulation; non-equilibrium Green's function; ab initio calculation}",
	keywords-plus = "{MAGNETIC MULTILAYERS}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Stiles, Mark/K-2426-2012 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 Stiles, Mark/0000-0001-8238-4156 }",
	cited-references = "{Brataas A, 2006, PHYS REP, V427, P157, DOI 10.1016/j.physrep.2006.01.001. Brataas A, 2001, EUR PHYS J B, V22, P99, DOI 10.1007/PL00011139. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Chiba D, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.216602. Datta S., 1995, ELECT TRANSPORT MESO. Katine JA, 2000, PHYS REV LETT, V84, P3149, DOI 10.1103/PhysRevLett.84.3149. Slonczewski JC, 1996, J MAGN MAGN MATER, V159, pL1, DOI 10.1016/0304-8853(96)00062-5. TUREK I, 1997, ELECT STRUCTURE DIS. Waintal X, 2000, PHYS REV B, V62, P12317, DOI 10.1103/PhysRevB.62.12317. Xia K, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.220401.}",
	number-of-cited-references = "{10}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{191RQ}",
	unique-id = "{ISI:000248150000350}"
}

I Turek, M Divis, D Niznansky and J Vejpravova. Local moments, exchange interactions, and magnetic order in Mn-doped LaFe2Si2 alloys. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 316(2):E403-E406, Září 2007. Joint European Magnetic Symposia (JEMS 06), San Sebastian, SPAIN, JUN 26-29, 2006. BibTeX

@article{ ISI:000248150000207,
	author = "Turek, I. and Divis, M. and Niznansky, D. and Vejpravova, J.",
	title = "{Local moments, exchange interactions, and magnetic order in Mn-doped LaFe2Si2 alloys}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2007}",
	volume = "{316}",
	number = "{2}",
	pages = "{E403-E406}",
	month = "{SEP}",
	note = "{Joint European Magnetic Symposia (JEMS 06), San Sebastian, SPAIN, JUN 26-29, 2006}",
	organization = "{Natl Advisory Comm}",
	abstract = "{Formation of local magnetic moments in the intermetallic compound LaFe2Si2 due to doping by a few at\% of Mn has been investigated by theoretical and experimental tools. While a number of low-temperature experiments prove appearance of non-zero magnetic moments due to the Mn doping, the measured Fe-57 Mossbauer spectra rule out sizable local moments of Fe atoms. This conclusion is in agreement with results of first-principles electronic structure calculations that yield non-vanishing moments only on Mn atoms. The calculated Mn-Mn exchange interactions are of both signs which indicate a magnetically frustrated ground state, probably with a spin-glass-like arrangement of the Mn moments. (C) 2007 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Ke Karlovu 5, CR-12116 Prague 2, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CR-12116 Prague 2, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, Brno 61662, Czech Republic. Charles Univ Prague, Dept Inorgan Chem, Fac Nat Sci, CR-12840 Prague 2, Czech Republic.}",
	doi = "{10.1016/j.jmmm.2007.04.026}",
	issn = "{0304-8853}",
	keywords = "{intermetallic compounds; density functional calculations; Mossbauer spectroscopy; exchange interactions}",
	keywords-plus = "{METALS}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Vejpravova, Jana/G-1895-2014 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Vejpravova, Jana/0000-0002-6308-9992 }",
	cited-references = "{ANDERSON PW, 1961, PHYS REV, V124, P41, DOI 10.1103/PhysRev.124.41. Blaha P., 2001, WIEN2K AUGMENTED PLA. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. OSWALD A, 1986, PHYS REV LETT, V56, P1419, DOI 10.1103/PhysRevLett.56.1419. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Turek I, 2005, J MAGN MAGN MATER, V290, P357, DOI 10.1016/j.jmmm.2004.11.260. Turek I., 1997, ELECT STRUCTURE DISO. Vejpravova J, 2005, J MAGN MAGN MATER, V290, P621, DOI 10.1016/j.jmmm.2004.11.326.}",
	number-of-cited-references = "{8}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{13}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{191RQ}",
	unique-id = "{ISI:000248150000207}"
}

K Carva and I Turek. Spin-mixing conductances of thin magnetic films from first principles. PHYSICAL REVIEW B 76(10), Září 2007. BibTeX

@article{ ISI:000249786300054,
	author = "Carva, K. and Turek, I.",
	title = "{Spin-mixing conductances of thin magnetic films from first principles}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2007}",
	volume = "{76}",
	number = "{10}",
	month = "{SEP}",
	abstract = "{We present a first-principles theory of the spin-mixing conductance for a thin ferromagnetic film embedded epitaxially between two nonmagnetic metallic electrodes. The complex spin-mixing conductance is formulated as a linear response of the spin torque experienced by the film due to the spin accumulation in one of the electrodes. The derivation is based on nonequilibrium Green's functions; the obtained result for the torque response is in agreement with the response of spin fluxes on both sides of the ferromagnet as well as with expressions derived within the Landauer-Buttiker scattering theory. Numerical implementation of the developed formalism employs the tight-binding linear muffin-tin orbital method and calculations are performed for selected metallic and half-metallic ferromagnetic films relevant for spintronics applications. The spin-mixing conductance of the Cu/Ni/Cu(100) system is found to exhibit pronounced oscillations as a function of Ni thickness; their period is explained by spin-resolved Fermi-surface properties of nickel. Investigated half-metallic films include the full-Heusler Co2MnSi compound and the diluted (Ga,Mn)As magnetic semiconductors attached to nonmagnetic Cr(100) leads; the imaginary part of their spin-mixing conductance has a magnitude comparable to the real part. This unusual feature has been qualitatively explained in terms of a free-electron model.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Carva, K (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, Ke Karlovu 5, CZ-12116 Prague, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CZ-12116 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.76.104409}",
	article-number = "{104409}",
	issn = "{1098-0121}",
	keywords-plus = "{COHERENT-POTENTIAL APPROXIMATION; GIANT MAGNETORESISTANCE; METALLIC MULTILAYERS; DISORDERED ALLOYS; TRANSPORT; SEMICONDUCTORS; OSCILLATIONS; SCATTERING; THICKNESS; ENERGIES}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
  
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 }",
	cited-references = "{AlHajDarwish M, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.157203. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Arrachea L, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.245322. Barnas J, 2006, MAT SCI ENG B-SOLID, V126, P271, DOI 10.1016/j.mseb.2005.09.016. Barnas J, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.024426. Bass J, 1999, J MAGN MAGN MATER, V200, P274, DOI 10.1016/S0304-8853(99)00316-9. Bauer GEW, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.126601. Berger L, 1996, PHYS REV B, V54, P9353, DOI 10.1103/PhysRevB.54.9353. Bergqvist L, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.195210. Brataas A, 2006, PHYS REP, V427, P157, DOI 10.1016/j.physrep.2006.01.001. Brataas A, 2001, EUR PHYS J B, V22, P99, DOI 10.1007/PL00011139. Brataas A, 2000, PHYS REV LETT, V84, P2481, DOI 10.1103/PhysRevLett.84.2481. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. BRUNO P, 1991, PHYS REV LETT, V67, P1602, DOI 10.1103/PhysRevLett.67.1602. Capelle K, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.206403. Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Chiba D, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.216602. DATTA S, 1990, J PHYS-CONDENS MAT, V2, P8023, DOI 10.1088/0953-8984/2/40/004. DATTA S, 1995, ELECT TRNSPORT MESOS. Drchal V, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.214414. Edwards DM, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.054407. Faleev SV, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.195422. FAULKNER JS, 1982, PROG MATER SCI, V27, P1, DOI 10.1016/0079-6425(82)90005-6. Fert A, 2004, J MAGN MAGN MATER, V272, P1706, DOI 10.1016/j.jmmm.2003.12.1351. FISHER DS, 1981, PHYS REV B, V23, P6851, DOI 10.1103/PhysRevB.23.6851. Galanakis I, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.174429. Haug H., 1996, QUANTUM KINETICS TRA. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. Huertas-Hernando D, 2005, EUR PHYS J B, V44, P373, DOI 10.1140/epjb/e2005-00136-1. ISHIDA S, 1995, J PHYS SOC JPN, V64, P2152, DOI 10.1143/JPSJ.64.2152. JOHNSON DD, 1992, MATER RES SOC SYMP P, V253, P277. Kalitsov A, 2006, J APPL PHYS, V99, DOI 10.1063/1.2151796. Katine JA, 2000, PHYS REV LETT, V84, P3149, DOI 10.1103/PhysRevLett.84.3149. Khomyakov PA, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.035450. Kovalev AA, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.054407. Krstic PS, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.205319. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Li Y, 2001, THIN SOLID FILMS, V381, P160, DOI 10.1016/S0040-6090(00)01545-5. Maekawa S., 2006, CONCEPTS SPIN ELECT. Maekawa S., 2002, SPIN DEPENDENT TRANS. MATHON J, 1995, PHYS REV B, V52, pR6983. Mathon J, 1997, PHYS REV B, V55, P14378, DOI 10.1103/PhysRevB.55.14378. Matsukura F, 2002, HANDB MAG M, V14, P1, DOI 10.1016/S1567-2719(09)60005-6. Mertig I, 1999, REP PROG PHYS, V62, P237, DOI 10.1088/0034-4885/62/2/004. Michael F, 2003, PHYSICA B, V339, P31, DOI 10.1016/S0921-4526(03)00447-2. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. Sakuraba Y, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2335583. Sanvito S, 1999, PHYS REV B, V59, P11936, DOI 10.1103/PhysRevB.59.11936. SCHEP KM, 1995, PHYS REV LETT, V74, P586, DOI 10.1103/PhysRevLett.74.586. Slonczcwski JC, 2002, J MAGN MAGN MATER, V247, P324, DOI 10.1016/S0304-8853(02)00291-3. Slonczewski JC, 1996, J MAGN MAGN MATER, V159, pL1, DOI 10.1016/0304-8853(96)00062-5. SOVEN P, 1967, PHYS REV, V156, P809, DOI 10.1103/PhysRev.156.809. Stiles MD, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014407. Theodonis I, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.237205. TSERKOVNYAK I, 2002, PHYS REV B, V66. Tserkovnyak Y, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.117601. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. VALET T, 1993, PHYS REV B, V48, P7099, DOI 10.1103/PhysRevB.48.7099. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Waintal X, 2000, PHYS REV B, V62, P12317, DOI 10.1103/PhysRevB.62.12317. Wijn H. P. J., 1991, MAGNETIC PROPERTIES. Xia K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.064420. Xia K, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.220401. Zwierzycki M, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.064420.}",
	number-of-cited-references = "{71}",
	times-cited = "{18}}, Usage-Count-(Last-180-days) = {{4}",
	usage-count-since-2013 = "{23}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{215CQ}",
	unique-id = "{ISI:000249786300054}"
}

I Turek, J Rusz and M Divis. Origin of the negative volume magnetostriction of the intermetallic compound GdAl2. JOURNAL OF ALLOYS AND COMPOUNDS 431(1-2):37-41, 2007. BibTeX

@article{ ISI:000245498300010,
	author = "Turek, I. and Rusz, J. and Divis, M.",
	title = "{Origin of the negative volume magnetostriction of the intermetallic compound GdAl2}",
	journal = "{JOURNAL OF ALLOYS AND COMPOUNDS}",
	year = "{2007}",
	volume = "{431}",
	number = "{1-2}",
	pages = "{37-41}",
	month = "{APR 4}",
	abstract = "{Spontaneous volume magnetostriction of the intermetallic compound GdAl2 with a cubic C15 Laves structure is studied from first principles using the local spin-density approximation combined optionally with an open-core treatment of the atomic-like Gd-4f orbitals. Local magnetic moments and equilibrium lattice parameters are evaluated for two spin structures, namely for the ferromagnetic ground state and for a state with randomly oriented Gd moments. The resulting spontaneous volume magnetostriction compares well with experimentally observed values; its negative sign however cannot be ascribed to a variation of the size of the local Gd moment but has its origin in the volume dependence of exchange interactions between the Gd moments. The Curie temperature and its pressure dependence are derived from the calculated pair exchange interactions as well; their values are found in reasonable agreement with experiment supporting thus the above explanation of the anomalous magnetoelastic behavior of the GdAl2 compound. (c) 2006 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE SA}",
	address = "{PO BOX 564, 1001 LAUSANNE, SWITZERLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Charles Univ Prague, Dept Elect Struct, Fac Math \& Phys, KE Karlovu 5, CR-12116 Prague 2, Czech Republic. Charles Univ Prague, Dept Elect Struct, Fac Math \& Phys, CR-12116 Prague 2, Czech Republic.}",
	doi = "{10.1016/j.jallcom.2006.05.057}",
	issn = "{0925-8388}",
	eissn = "{1873-4669}",
	keywords = "{intermetallics; rare earth compounds; magnetostriction; electronic band structure}",
	keywords-plus = "{ELECTRONIC-STRUCTURE; EXCHANGE INTERACTIONS; THERMAL-EXPANSION; 1ST-PRINCIPLES THEORY; MAGNETIC-PROPERTIES; CURIE-TEMPERATURE; METALS; BULK; GD; Y(CO1-XALX)(2)}",
	research-areas = "{Chemistry; Materials Science; Metallurgy \& Metallurgical Engineering}",
	web-of-science-categories = "{Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy \& Metallurgical Engineering}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Rusz, Jan/A-3324-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Rusz, Jan/0000-0002-0074-1349 }",
	cited-references = "{ABELL JS, 1983, J MAGN MAGN MATER, V31-4, P247, DOI 10.1016/0304-8853(83)90235-4. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Andreev A. V., 1995, HANDB MAG M, V8, P59, DOI 10.1016/S1567-2719(05)80031-9. Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. Baranovskiy AE, 2003, J MAGN MAGN MATER, V258, P520, DOI 10.1016/S0304-8853(02)01131-9. Blaha P., 2001, WIEN2K AUGMENTED PLA. DELACHEISSERIE ED, 1988, J MAGN MAGN MATER, V73, P289. ERIKSSON O, 1995, PHYS REV B, V52, P4420, DOI 10.1103/PhysRevB.52.4420. Fuchizaki Y, 2006, J ALLOY COMPD, V408, P234, DOI 10.1016/j.jallcom.2005.04.023. Gubanov V. A., 1992, MAGNETISM ELECT STRU. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. JAAKKOLA SM, 1980, SOLID STATE COMMUN, V36, P275, DOI 10.1016/0038-1098(80)90276-8. JANAK JF, 1976, PHYS REV B, V14, P4199, DOI 10.1103/PhysRevB.14.4199. KHMELEVSKIY S, PHYS REV B. Khmelevskyi S, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.132401. Khmelevskyi S, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.140404. Khmelevskyi S, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.037201. Khmelevskyi S, 2002, J PHYS-CONDENS MAT, V14, P13799, DOI 10.1088/0953-8984/14/50/307. Khmelevskyi S, 2001, J PHYS-CONDENS MAT, V13, P8405, DOI 10.1088/0953-8984/13/36/313. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. KOLLIE TG, 1977, PHYS REV B, V16, P4872, DOI 10.1103/PhysRevB.16.4872. Kurz P, 2002, J PHYS-CONDENS MAT, V14, P6353, DOI 10.1088/0953-8984/14/25/305. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Lindbaum A, 2002, HANDB MAG M, V14, P307, DOI 10.1016/S1567-2719(09)60008-1. Moran S, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.012407. Nitzsche U, 2004, J MAGN MAGN MATER, V272, pE249, DOI 10.1016/j.jmmm.2003.12.399. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Perlov AY, 2000, PHYS REV B, V61, P4070, DOI 10.1103/PhysRevB.61.4070. POURARIAN F, 1980, J PHYS CHEM SOLIDS, V41, P123, DOI 10.1016/0022-3697(80)90042-6. RICHTER F, 1969, PHYS STATUS SOLIDI, V34, pK149, DOI 10.1002/pssb.19690340261. Richter M, 1998, J PHYS D APPL PHYS, V31, P1017, DOI 10.1088/0022-3727/31/9/002. Ruban AV, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.125115. Rusz J, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.174408. Strange P, 1999, NATURE, V399, P756, DOI 10.1038/21595. TETER DM, 1995, PHYS REV B, V52, P8064, DOI 10.1103/PhysRevB.52.8064. Turek I, 2006, PHILOS MAG, V86, P1713, DOI 10.1080/14786430500504048. Turek I, 2005, J MAGN MAGN MATER, V290, P357, DOI 10.1016/j.jmmm.2004.11.260. Turek I, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224431. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I., 1997, ELECT STRUCTURE DISO. VANVLECK JH, 1932, THEORY ELASTIC MAGNE. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WASSERMAN EF, 1990, FERROMAGNETIC MATERI, V5, P237.}",
	number-of-cited-references = "{45}",
	times-cited = "{8}}, Usage-Count-(Last-180-days) = {{3}",
	usage-count-since-2013 = "{11}",
	journal-iso = "{J. Alloy. Compd.}",
	doc-delivery-number = "{154HT}",
	unique-id = "{ISI:000245498300010}"
}

Jan Rusz, Josef Kudrnovsky and Ilja Turek. Exchange interactions and correlations in Ni1+xMnSb Heusler alloys. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 310(2, 2):1654-1656, Březen 2007. 17th International Conference on Magnetism (ICM 2006), Kyoto, JAPAN, AUG 20-25, 2006. BibTeX

@article{ ISI:000247618700370,
	author = "Rusz, Jan and Kudrnovsky, Josef and Turek, Ilja",
	title = "{Exchange interactions and correlations in Ni1+xMnSb Heusler alloys}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2007}",
	volume = "{310}",
	number = "{2, 2}",
	pages = "{1654-1656}",
	month = "{MAR}",
	note = "{17th International Conference on Magnetism (ICM 2006), Kyoto, JAPAN, AUG 20-25, 2006}",
	organization = "{Int Union Pure \& Appl Phys}",
	abstract = "{In this work we extend our recently published ab initio study {[}J. Rusz, L. Bergqvist, J. Kudrnovsky, I. Turek, Phys. Rev. B 73 (2006) 214412] of finite temperature magnetic properties of Ni1+xMnSb Hensler alloy family (0 <= x <= 1) with particular attention to the role of electronic correlations beyond the local density approximation. Exchange interactions are calculated using the magnetic force theorem on the base of zero-temperature electronic structure obtained within the density functional theory. The resulting effective classical Heisenberg hamiltonian is treated by methods of statistical physics. Our results are in improved agreement with experiment compared to bare local density approximation results, particularly for alloys with lower nickel content. (c) 2006 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Rusz, J (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CR-12116 Prague 2, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Dept Condensed Matter Phys, CR-12116 Prague 2, Czech Republic. Acad Sci Czech Republ, Inst Phys, Prague 18221, Czech Republic.}",
	doi = "{10.1016/j.jmmm.2006.10.495}",
	issn = "{0304-8853}",
	keywords = "{exchange interactions; random phase approximation; heusler alloys; critical temperature}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Rusz, Jan/A-3324-2008 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Rusz, Jan/0000-0002-0074-1349 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{ANISIMOV VI, 1993, PHYS REV B, V48, P16929, DOI 10.1103/PhysRevB.48.16929. Chioncel L, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.144425. CHIONCEL L, 2006, PHYS REV LETT, V96, P7203. Kandpal HC, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.094422. Kurtulus Y, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.014425. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Rusz J, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.214412. Rusz J, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.174408. Sasioglu E, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.024427. Turek I., 1997, ELECT STRUCTURE DISO. WEBSTER PJ, 1984, J MAGN MAGN MATER, V42, P300, DOI 10.1016/0304-8853(84)90113-6.}",
	number-of-cited-references = "{11}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{184CM}",
	unique-id = "{ISI:000247618700370}"
}

Karel Carva, Ilja Turek and Josef Kudrnovsky. Ab initio calculations of transport properties of epitaxial (Ga,Mn)As systems. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 310(2, 3):2123-2125, Březen 2007. BibTeX

@article{ ISI:000247720400081,
	author = "Carva, Karel and Turek, Ilja and Kudrnovsky, Josef",
	title = "{Ab initio calculations of transport properties of epitaxial (Ga,Mn)As systems}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2007}",
	volume = "{310}",
	number = "{2, 3}",
	pages = "{2123-2125}",
	month = "{MAR}",
	abstract = "{We calculate transport properties of thin (Ga, Mn)As layers sandwiched between two Cr(0 0 1) leads as a function of Mn concentration and layer thickness, special attention is paid to the spin polarization of the current-perpendicular-to-plane (CPP) conductance. We compare our results to bulk properties. Doping GaAs with Mn increases occurrence of As antisites on the Ga sublattice. Our method allows us to take into account even very small defect concentration changes, and we show that it may have a dramatic impact on the CPP spin polarization, apart from its already known influence on Curie temperatures. (c) 2006 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Carva, K (Reprint Author), Charles Univ Prague, Fac Math \& Phys, DCMP, Ke Karlova 5, CZ-12116 Prague 2, Czech Republic. Charles Univ Prague, Fac Math \& Phys, DCMP, CZ-12116 Prague 2, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic.}",
	doi = "{10.1016/j.jmmm.2006.10.933}",
	issn = "{0304-8853}",
	keywords = "{diluted magnetic semiconductor; magnetotransport; spintronics; thin film; ab initio calculation}",
	keywords-plus = "{SEMICONDUCTORS}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Carva K, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.144421. Edmonds KW, 2002, APPL PHYS LETT, V81, P4991, DOI 10.1063/1.1529079. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017.}",
	number-of-cited-references = "{4}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{3}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{185ON}",
	unique-id = "{ISI:000247720400081}"
}

M Ondracek, J Kudrnovsky, I Turek and F Maca. Magnetism of 3d transition metal atoms on W(001): submonolayer films. In E Meyer, M Hegner, C Gerber and HJ Guntherodt (eds.). PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY 61. 2007, 894-898. International Conference on Nanoscience and Technology, Basel, SWITZERLAND, JUL 30-AUG 04, 2006. BibTeX

@inproceedings{ ISI:000291445400178,
	author = "Ondracek, M. and Kudrnovsky, J. and Turek, I. and Maca, F.",
	editor = "{Meyer, E and Hegner, M and Gerber, C and Guntherodt, HJ}",
	title = "{Magnetism of 3d transition metal atoms on W(001): submonolayer films}",
	booktitle = "{PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY}",
	series = "{Journal of Physics Conference Series}",
	year = "{2007}",
	volume = "{61}",
	pages = "{894-898}",
	note = "{International Conference on Nanoscience and Technology, Basel, SWITZERLAND, JUL 30-AUG 04, 2006}",
	abstract = "{We have investigated random submonolayer films of 3d transition metals on W(001). The tight-binding linear muffin-tin orbital method combined with the coherent potential approximation was employed to calculate the electronic structure of the films. We have estimated local magnetic moments and the stability of different magnetic structures, namely the ferromagnetic order, the disordered local moments and the non-magnetic state, by comparing the total energies of the corresponding systems. It has been found that the magnetic moments of V and Cr decrease and eventually disappear with decreasing coverage. On the other hand, Fe retains approximately the same magnetic moment throughout the whole concentration range from a single impurity to the monolayer coverage. Mn is an intermediate case between Cr and Fe since it is non-magnetic at very low coverages and (ferro) magnetic otherwise.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Ondracek, M (Reprint Author), Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. Ondracek, M.; Kudrnovsky, J.; Maca, F., Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.}",
	doi = "{10.1088/1742-6596/61/1/178}",
	issn = "{1742-6588}",
	keywords-plus = "{ALLOYS}",
	research-areas = "{Chemistry; Science \& Technology - Other Topics; Physics}",
	web-of-science-categories = "{Chemistry, Physical; Nanoscience \& Nanotechnology; Physics, Atomic, Molecular \& Chemical; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Ondracek, Martin/A-1871-2012 Maca, Frantisek/G-4467-2014 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Ferriani P, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.024452. Kubetzka A, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.087204. LEVIN K, 1972, PHYS REV B-SOLID ST, V6, P1865, DOI 10.1103/PhysRevB.6.1865. Stoner EC, 1939, PROC R SOC LON SER-A, V169, P339, DOI 10.1098/rspa.1939.0003. TUREK I, 1994, PHYS REV B, V49, P3352, DOI 10.1103/PhysRevB.49.3352. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Wulfhekel W, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.144416.}",
	number-of-cited-references = "{8}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	doc-delivery-number = "{BVG12}",
	unique-id = "{ISI:000291445400178}"
}

J Rusz, L Bergqvist, J Kudrnovsky and I Turek. Exchange interactions and Curie temperatures in Ni2-xMnSb alloys: First-principles study. PHYSICAL REVIEW B 73(21), Červen 2006. BibTeX

@article{ ISI:000238696200076,
	author = "Rusz, J. and Bergqvist, L. and Kudrnovsky, J. and Turek, I.",
	title = "{Exchange interactions and Curie temperatures in Ni2-xMnSb alloys: First-principles study}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2006}",
	volume = "{73}",
	number = "{21}",
	month = "{JUN}",
	abstract = "{We present a first-principles study of the physical properties of the disordered Ni2-xMnSb alloys which form a continuous series connecting two typical members of the Heusler alloy family: namely, the half-metallic semi-Heusler alloy NiMnSb (x=1) and related metallic Heusler alloy Ni2MnSb (x=0). Magnetic moments, exchange interactions, magnon spectra, and Curie temperatures at ambient and elevated pressures are determined and compared with available experimental data. The spin-spin correlation functions at the critical temperature are also calculated. The pair exchange interactions and corresponding classical Heisenberg Hamiltonian are derived from self-consistent electronic structure calculations using a magnetic force theorem. Heusler alloys NiMnSb and Ni2MnSb exhibit strikingly different asymptotic behavior of exchange interactions with the distance between magnetic atoms. The Curie temperatures are estimated using multisublattice versions of the mean-field approximation, random-phase approximation, and Monte Carlo simulations. The robustness of the results with respect to the effect of correlations beyond the local density approximation, the selected reference state used for mapping to the Heisenberg Hamiltonian, and the applied mapping procedure are also discussed.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Rusz, J (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Elect Struct, Karlovu 5, CR-12116 Prague 2, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Dept Elect Struct, CR-12116 Prague 2, Czech Republic. Uppsala Univ, Dept Phys, S-75121 Uppsala, Sweden. Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic.}",
	doi = "{10.1103/PhysRevB.73.214412}",
	article-number = "{214412}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{SPIN DYNAMICS; METALS; FE; CO; NI}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Rusz, Jan/A-3324-2008 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Bergqvist, Lars/J-5282-2014}",
	orcid-numbers = "{Rusz, Jan/0000-0002-0074-1349 KUDRNOVSKY, Josef/0000-0002-9968-6748 Bergqvist, Lars/0000-0003-4341-5663}",
	cited-references = "{Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. Antropov VP, 2003, J MAGN MAGN MATER, V262, pL192, DOI 10.1016/S0304-8853(03)00206-3. Bergqvist L, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.137202. Bruno P, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.087205. Chioncel L, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.144425. GAVRILIUK AG, 1995, J APPL PHYS, V79, P2609. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. Halilov SV, 1998, PHYS REV B, V58, P293, DOI 10.1103/PhysRevB.58.293. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. Khmelevskyi S, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.224432. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. Kurtulus Y, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.014425. Landau D. P., 2000, GUIDE MONTE CARLO SI. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. MAJLIS N, 2001, QUANTUM THEORY MAGNE. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Rosengaard NM, 1997, PHYS REV B, V55, P14975, DOI 10.1103/PhysRevB.55.14975. Ruban AV, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.125115. Rusz J, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.174408. Sandratskii LM, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224432. Sandratskii LM, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.214402. Sasioglu E, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.214412. Sasioglu E, 2005, J MAGN MAGN MATER, V290, P385, DOI 10.1016/j.jmmm.2004.11.267. Sasioglu E, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.024427. Shick AB, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.125207. YaG Sinai, 1982, THEORY PHASE TRANSIT. Turek I., 1997, ELECT STRUCTURE DISO. WEBSTER PJ, 1984, J MAGN MAGN MATER, V42, P300, DOI 10.1016/0304-8853(84)90113-6.}",
	number-of-cited-references = "{29}",
	times-cited = "{67}}, Usage-Count-(Last-180-days) = {{4}",
	usage-count-since-2013 = "{22}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{058WV}",
	unique-id = "{ISI:000238696200076}"
}

Jan Rusz, Ilja Turek and Martin Divis. Exchange interactions and crystal-field effects in HoX (X = Ag, Cd, Cu, Mg, Rh, Zn) intermetallic compounds. PHYSICA B-CONDENSED MATTER 381(1-2):265-270, 2006. BibTeX

@article{ ISI:000238664400044,
	author = "Rusz, Jan and Turek, Ilja and Divis, Martin",
	title = "{Exchange interactions and crystal-field effects in HoX (X = Ag, Cd, Cu, Mg, Rh, Zn) intermetallic compounds}",
	journal = "{PHYSICA B-CONDENSED MATTER}",
	year = "{2006}",
	volume = "{381}",
	number = "{1-2}",
	pages = "{265-270}",
	month = "{MAY 31}",
	abstract = "{We present an ab initio treatment of the exchange interactions and crystal-field effects in HoX (X = Ag, Cd, Cu, Mg, Rh, Zn) intermetallic compounds with the CsCl crystal structure. The exchange interactions are determined using the magnetic-force theorem starting from both a ferromagnetically ordered state (zero temperature) and a disordered-local-moments (effectively high temperature) state up to an interatomic distance of 10a, where a is the lattice parameter. The exchange interactions are used for construction of the Heisenberg Hamiltonian, from which we determine the magnetic-transition temperatures using the mean-field approximation and the Green's-function based random-phase approximation. The crystal-field parameters are derived from an ab initio electronic structure of the non-magnetic state. A combined Hamiltonian is treated within the mean-field approximation to study the effect of the crystal-field interaction on the critical temperatures and the magnetization. (c) 2006 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Rusz, J (Reprint Author), Charles Univ Prague, Dept Elect Struct, Fac Math \& Phys, Ke Karlovu 5, Prague 12116 2, Czech Republic. Charles Univ Prague, Dept Elect Struct, Fac Math \& Phys, Prague 12116 2, Czech Republic.}",
	doi = "{10.1016/j.physb.2006.01.509}",
	issn = "{0921-4526}",
	eissn = "{1873-2135}",
	keywords = "{critical temperature; exchange interactions; crystal field; Heisenberg model; HoX compounds}",
	keywords-plus = "{RANDOM PHASE APPROXIMATION; MAGNETIC-PROPERTIES; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Rusz, Jan/A-3324-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Rusz, Jan/0000-0002-0074-1349 }",
	cited-references = "{Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. Blaha P., 2001, WIEN2K AUGMENTED PLA. BOWDEN GJ, 1990, J PHYS-CONDENS MAT, V2, P10435, DOI 10.1088/0953-8984/2/51/016. BOWDEN GJ, 1990, J PHYS-CONDENS MAT, V2, P10461, DOI 10.1088/0953-8984/2/51/018. BOWDEN GJ, 1990, J PHYS-CONDENS MAT, V2, P10451, DOI 10.1088/0953-8984/2/51/017. BUSCHOW K, 1979, REP PROG PHYS, V42, P1373, DOI 10.1088/0034-4885/42/8/003. DIEKE GH, 1968, SPECTRAL ENERGY LEVE. Divis A, 2005, J ALLOY COMPD, V403, P29, DOI 10.1016/j.jallcom.2005.04.192. Eschrig H., 1988, OPTIMIZED LCAO METHO. GIRAUD M, 1986, J MAGN MAGN MATER, V59, P255, DOI 10.1016/0304-8853(86)90421-X. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. HUTCHINGS MT, 1964, SOLID STATE PHYS, V16, P227. LIECHTENSTEIN AI, 1984, J PHYS F MET PHYS, V14, pL125, DOI 10.1088/0305-4608/14/7/007. MAJLIS N, 2001, QUANTUM THEORY MAGNE. NOVAK P, 1992, J MAGN MAGN MATER, V104, P1499, DOI 10.1016/0304-8853(92)91425-S. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. RICHTER M, 1989, SOLID STATE COMMUN, V72, P263, DOI 10.1016/0038-1098(89)90807-7. Richter M, 1998, J PHYS D APPL PHYS, V31, P1017, DOI 10.1088/0022-3727/31/9/002. Rusz J, 2006, PHYSICA B, V378-80, P1079, DOI 10.1016/j.physb.2006.01.427. Rusz J, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.174408. RUSZ J, UNPUB PHYS REV B. SCHMITT D, 1977, PHYS REV B, V15, P1698, DOI 10.1103/PhysRevB.15.1698. SINAI Y, 1982, THEORY PHASE T RIGOR. Turek I, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224431. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{25}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{Physica B}",
	doc-delivery-number = "{058KR}",
	unique-id = "{ISI:000238664400044}"
}

J Rusz, I Turek and M Divis. Calculations of magnetic transition temperatures of Gd-based compounds. PHYSICA B-CONDENSED MATTER 378-80:1079-1080, 2006. International Conference on Strongly Correlated Electron Systems (SECES 05), Vienna, AUSTRIA, JUL 26-30, 2005. BibTeX

@article{ ISI:000238426600472,
	author = "Rusz, J and Turek, I and Divis, M",
	title = "{Calculations of magnetic transition temperatures of Gd-based compounds}",
	journal = "{PHYSICA B-CONDENSED MATTER}",
	year = "{2006}",
	volume = "{378-80}",
	pages = "{1079-1080}",
	month = "{MAY 1}",
	note = "{International Conference on Strongly Correlated Electron Systems (SECES 05), Vienna, AUSTRIA, JUL 26-30, 2005}",
	abstract = "{We present results of a calculation of critical temperatures of ordered GdX compounds with CsCl structure (X = Mg Rh, Cd. Zn, Cu, Ag, TI) within the Heisenberg Hamiltonian. The pair exchange interactions were evaluated using a parameter-free method based on the magnetic force theorem. The resulting critical temperatures are compared to experiment:, they exhibit strong sensitivity to computational details. (c) 2006 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Rusz, J (Reprint Author), Charles Univ, Fac Math \& Phys, Dept Elect Struct, Karlovu 5, CR-12116 Prague 2, Czech Republic. Charles Univ, Fac Math \& Phys, Dept Elect Struct, CR-12116 Prague 2, Czech Republic.}",
	doi = "{10.1016/j.physb.2006.01.427}",
	issn = "{0921-4526}",
	keywords = "{critical temperature; exchange interactions; Heisenberg model; GdX compounds}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Rusz, Jan/A-3324-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Rusz, Jan/0000-0002-0074-1349 }",
	cited-references = "{Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. Blanco JA, 1999, PHYS REV B, V59, P512, DOI 10.1103/PhysRevB.59.512. Bruno P, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.087205. BUSCHOW K, 1979, REP PROG PHYS, V42, P1373, DOI 10.1088/0034-4885/42/8/003. KOBLER U, 1988, J PHYS-PARIS, V49, P1099. Kunes J, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.174415. MAJLIS N, 2001, QUANTUM THEORY MAGNE. Rusz J, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.174408. Turek I, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224431. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{10}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Physica B}",
	doc-delivery-number = "{055CC}",
	unique-id = "{ISI:000238426600472}"
}

I Turek, J Kudrnovsky, V Drchal and P Bruno. Exchange interactions, spin waves, and transition temperatures in itinerant magnets. PHILOSOPHICAL MAGAZINE 86(12):1713-1752, 2006. BibTeX

@article{ ISI:000237083900006,
	author = "Turek, I and Kudrnovsky, J and Drchal, V and Bruno, P",
	title = "{Exchange interactions, spin waves, and transition temperatures in itinerant magnets}",
	journal = "{PHILOSOPHICAL MAGAZINE}",
	year = "{2006}",
	volume = "{86}",
	number = "{12}",
	pages = "{1713-1752}",
	month = "{APR 21}",
	abstract = "{This contribution reviews an ab initio two-step procedure to determine exchange interactions, spin-wave spectra, and thermodynamic properties of itinerant magnets. In the first step, the self-consistent electronic structure of a system is calculated for a collinear spin structure at zero temperature. In the second step, parameters of an effective classical Heisenberg Hamiltonian are determined using the magnetic force theorem and the one-electron Green functions. The Heisenberg Hamiltonian and methods of statistical physics are employed in subsequent evaluation of magnon dispersion laws, spin-wave stiffness constants, and Curie/Neel temperatures. The applicability of the developed scheme is illustrated by selected properties of various systems such as transition and rare-earth metals, disordered alloys including diluted magnetic semiconductors, ultrathin films, and surfaces. A comparison to other ab initio approaches is presented as well.}",
	publisher = "{TAYLOR \& FRANCIS LTD}",
	address = "{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}",
	type = "{Review}",
	language = "{English}",
	affiliation = "{Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic. Vienna Univ Technol, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany.}",
	doi = "{10.1080/14786430500504048}",
	issn = "{1478-6435}",
	eissn = "{1478-6443}",
	keywords-plus = "{DENSITY-FUNCTIONAL THEORY; AB-INITIO THEORY; OSCILLATORY CURIE-TEMPERATURE; SHORT-RANGE ORDER; ELECTRONIC-STRUCTURE; 1ST-PRINCIPLES THEORY; FERROMAGNETIC METALS; PARAMAGNETIC ALLOYS; FINITE-TEMPERATURE; NEUTRON-SCATTERING}",
	research-areas = "{Materials Science; Mechanics; Metallurgy \& Metallurgical Engineering; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mechanics; Metallurgy \& Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. ANISIMOV VI, 1988, PHYS REV B, V37, P5598, DOI 10.1103/PhysRevB.37.5598. Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. ANTROPOV VP, 1992, MATER RES SOC SYMP P, V253, P325. Antropov VP, 1996, PHYS REV B, V54, P1019, DOI 10.1103/PhysRevB.54.1019. ANTROPOV VP, 1995, PHYS REV LETT, V75, P729, DOI 10.1103/PhysRevLett.75.729. Antropov VP, 2003, J MAGN MAGN MATER, V262, pL192, DOI 10.1016/S0304-8853(03)00206-3. Antropov VP, 1997, PHYSICA B, V237, P336, DOI 10.1016/S0921-4526(97)00203-2. Asada T, 1997, PHYS REV LETT, V79, P507, DOI 10.1103/PhysRevLett.79.507. BABERSCHKE K, 2001, LECT NOTES PHYS, V580. Bergqvist L, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.137202. BERGQVIST L, 2005, PHYS REV B, V72, P195. BINDER K, 1986, REV MOD PHYS, V58, P801, DOI 10.1103/RevModPhys.58.801. Binder K., 2002, MONTE CARLO SIMULATI. BLACKMAN JA, 1969, J PHYS PART C SOLID, V2, P1670, DOI 10.1088/0022-3719/2/9/317. BLUGEL S, 1993, MAGNETISMUS FESTKORP. Bouzerar G, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014410. Bouzerar G, 2005, EUROPHYS LETT, V69, P812, DOI 10.1209/epl/i2004-10473-1. Bouzerar G, 2004, APPL PHYS LETT, V85, P4941, DOI 10.1063/1.1826226. Bouzerar G, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.081203. BROOKS MSS, 1991, J PHYS-CONDENS MAT, V3, P2357, DOI 10.1088/0953-8984/3/14/015. Brooks M.S.S., 1993, HDB MAGNETIC MAT, V7, P139, DOI 10.1016/S1567-2719(05)80044-7. Brown RH, 1999, J APPL PHYS, V85, P4830, DOI 10.1063/1.370035. BRUNO P, 1992, MATER RES SOC SYMP P, V231, P299. Bruno P, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.087205. Bruno P, 2002, J MAGN MAGN MATER, V240, P346, DOI 10.1016/S0304-8853(01)00796-X. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. CALLAWAY J, 1983, PHYS REV B, V28, P3818, DOI 10.1103/PhysRevB.28.3818. DEDERICHS PH, 1984, PHYS REV LETT, V53, P2512, DOI 10.1103/PhysRevLett.53.2512. DRELL SD, 1955, PHYS REV, V99, P849, DOI 10.1103/PhysRev.99.849. Edmonds KW, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.037201. Edmonds KW, 2002, APPL PHYS LETT, V81, P4991, DOI 10.1063/1.1529079. Eriksson O, 2004, J PHYS-CONDENS MAT, V16, pS5481, DOI 10.1088/0953-8984/16/48/002. FRANEK P, 2003, THESIS CHARLES U PRA. FREEMAN AJ, 1991, J MAGN MAGN MATER, V100, P497, DOI 10.1016/0304-8853(91)90837-Z. FROHLICH J, 1976, COMMUN MATH PHYS, V50, P79, DOI 10.1007/BF01608557. Frota-Pessoa S, 2000, PHYS REV B, V62, P5293, DOI 10.1103/PhysRevB.62.5293. Ghosh S, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.214206. GHOSH S, 2002, PHYS REV B, V66. GIERGIEL J, 1995, PHYS REV B, V51, P10201, DOI 10.1103/PhysRevB.51.10201. Gonis A., 1992, GREEN FUNCTIONS ORDE. Grotheer O, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.100401. Gubanov V. A., 1992, MAGNETISM ELECT STRU. GUNNARSSON O, 1983, PHYS REV B, V27, P7144, DOI 10.1103/PhysRevB.27.7144. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. Halilov S, 2003, SPRINGER SERIES MATE, V54, P1. Halilov SV, 1998, PHYS REV B, V58, P293, DOI 10.1103/PhysRevB.58.293. HASS KC, 1984, PHYS REV B, V29, P3697, DOI 10.1103/PhysRevB.29.3697. HEINEMANN M, 1994, PHYS REV B, V49, P4348, DOI 10.1103/PhysRevB.49.4348. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. Isaev E. I., 2002, Physical Review B (Condensed Matter and Materials Physics), V65, DOI 10.1103/PhysRevB.65.024435. Jensen J., 1991, RARE EARTH MAGNETISM. Katsnelson MI, 2000, PHYS REV B, V61, P8906, DOI 10.1103/PhysRevB.61.8906. Katsnelson MI, 2004, J PHYS-CONDENS MAT, V16, P7439, DOI 10.1088/0953-8984/16/41/023. Khmelevskyi S, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.224432. Kodderitzsch D, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.064434. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. Kubler J., 2000, THEORY ITINERANT ELE. Kudrnovsky J, 2004, J MAGN MAGN MATER, V272, P1995, DOI 10.1016/j.jmmm.2003.12.789. Kudrnovsky J, 2003, J SUPERCOND, V16, P119, DOI 10.1023/A:1023257306608. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. Kudrnovsky J, 2000, LECT NOTES PHYS, V535, P313. Kunes J, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.174415. KURRNOVSKY J, 2004, PHYS REV B, V69. Kurz P, 2002, J PHYS-CONDENS MAT, V14, P6353, DOI 10.1088/0953-8984/14/25/305. Levy PM, 1998, PHYS REV B, V58, P5588, DOI 10.1103/PhysRevB.58.5588. LIECHTENSTEIN AI, 1984, J PHYS F MET PHYS, V14, pL125, DOI 10.1088/0305-4608/14/7/007. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. LIECHTENSTEIN AI, 1987, PHYS MET METALLOGR, V64, P35. LINDGARD PA, 1978, PHYS REV B, V17, P2348, DOI 10.1103/PhysRevB.17.2348. LING MF, 1994, J PHYS-CONDENS MAT, V6, P6001, DOI 10.1088/0953-8984/6/30/017. LING MF, 1994, J PHYS-CONDENS MAT, V6, P5981, DOI 10.1088/0953-8984/6/30/016. LOONG CK, 1984, J APPL PHYS, V55, P1895, DOI 10.1063/1.333511. LYNN JW, 1975, PHYS REV B, V11, P2624, DOI 10.1103/PhysRevB.11.2624. Maca F, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.235209. MATHON J, 1983, PHYS REV B, V27, P1916, DOI 10.1103/PhysRevB.27.1916. MERMIN ND, 1965, PHYS REV, V137, P1441. MERMIN ND, 1966, PHYS REV LETT, V17, P1133, DOI 10.1103/PhysRevLett.17.1133. MILLHOUSE AH, 1973, SOLID STATE COMMUN, V13, P339, DOI 10.1016/0038-1098(73)90605-4. Mohn P., 2003, MAGNETISM SOLID STAT. MOOK HA, 1985, PHYS REV LETT, V54, P227, DOI 10.1103/PhysRevLett.54.227. MOOK HA, 1973, PHYS REV LETT, V30, P556, DOI 10.1103/PhysRevLett.30.556. Moryia T., 1985, SPIN FLUCTUATIONS IT. MORYIA T, 1981, ELECT CORRELATION MA. Mryasov ON, 1996, J APPL PHYS, V79, P4805, DOI 10.1063/1.361678. NERESON NG, 1964, PHYS REV, V135, P176. Ney A, 1999, PHYS REV B, V59, pR3938, DOI 10.1103/PhysRevB.59.R3938. Niu Q, 1999, PHYS REV LETT, V83, P207, DOI 10.1103/PhysRevLett.83.207. Niu Q, 1998, PHYS REV LETT, V80, P2205, DOI 10.1103/PhysRevLett.80.2205. Novak P, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.184433. NOVAK P, 1994, PHYS REV B, V50, P2085, DOI 10.1103/PhysRevB.50.2085. OGUCHI T, 1983, J PHYS F MET PHYS, V13, P145, DOI 10.1088/0305-4608/13/1/018. OGUCHI T, 1983, PHYS REV B, V28, P6443, DOI 10.1103/PhysRevB.28.6443. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. PAUTHENET R, 1982, J APPL PHYS, V53, P8187, DOI 10.1063/1.330287. PAUTHENET R, 1982, J APPL PHYS, V53, P2029, DOI 10.1063/1.330694. Perlov AY, 2000, PHYS REV B, V61, P4070, DOI 10.1103/PhysRevB.61.4070. Poulopoulos P, 1999, J PHYS-CONDENS MAT, V11, P9495, DOI 10.1088/0953-8984/11/48/310. Qian D, 2001, PHYS REV LETT, V87, part. no., DOI 10.1103/PhysRevLett.87.227204. Razee SSA, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.094415. RAZEE SSA, 2002, PHYS REV LETT, V88. Richter M, 1998, J PHYS D APPL PHYS, V31, P1017, DOI 10.1088/0022-3727/31/9/002. Rosengaard NM, 1997, PHYS REV B, V55, P14975, DOI 10.1103/PhysRevB.55.14975. Ruban AV, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.054402. Ruban AV, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.125115. RUNGE E, 1984, PHYS REV LETT, V52, P997, DOI 10.1103/PhysRevLett.52.997. Rusz J, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.174408. SABIRYANOV RF, 1995, PHYS REV B, V51, P8958, DOI 10.1103/PhysRevB.51.8958. SANDRATSKII LM, 1991, J PHYS-CONDENS MAT, V3, P8565, DOI 10.1088/0953-8984/3/44/004. Sandratskii LM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.134435. Sandratskii LM, 1998, ADV PHYS, V47, P91, DOI 10.1080/000187398243573. Sasioglu E, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.024427. Sato K, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.201202. Sato K, 2003, PHYSICA B, V340, P863, DOI 10.1016/j.physb.2003.09.241. Sato K, 2003, EUROPHYS LETT, V61, P403, DOI 10.1209/epl/i2003-00191-8. Savrasov SY, 1998, PHYS REV LETT, V81, P2570, DOI 10.1103/PhysRevLett.81.2570. Shick AB, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.125207. Shick AB, 2000, PHYS REV B, V61, pR9213, DOI 10.1103/PhysRevB.61.R9213. SHIRANE G, 1968, J APPL PHYS, V39, P383, DOI 10.1063/1.2163453. SIEGMANN HC, 1992, J PHYS-CONDENS MAT, V4, P8395, DOI 10.1088/0953-8984/4/44/004. YaG Sinai, 1982, THEORY PHASE TRANSIT. Sjostedt E, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014447. Spisak D, 1997, J MAGN MAGN MATER, V168, P257, DOI 10.1016/S0304-8853(96)00700-7. STAUNTON JB, 1992, PHYS REV LETT, V69, P371, DOI 10.1103/PhysRevLett.69.371. Staunton JB, 2002, PHYSICA B, V318, P316, DOI 10.1016/S0921-4526(02)00797-4. STAUNTON JB, 1994, REP PROG PHYS, V57, P1289, DOI 10.1088/0034-4885/57/12/002. Strange P, 1999, NATURE, V399, P756, DOI 10.1038/21595. Straub M, 1996, PHYS REV LETT, V77, P743, DOI 10.1103/PhysRevLett.77.743. Szunyogh L, 1999, J MAGN MAGN MATER, V198-99, P537, DOI 10.1016/S0304-8853(98)01232-3. TIMM C, 2003, J PHYS-CONDENS MAT, V15, P1865. Tober ED, 1998, PHYS REV LETT, V81, P2360, DOI 10.1103/PhysRevLett.81.2360. Turek I, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224431. Turek I, 2003, PHYS STATUS SOLIDI B, V236, P318, DOI 10.1002/pssb.200301671. Turek I, 2003, CZECH J PHYS, V53, P81, DOI 10.1023/A:1022363806047. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. Tyablikov S. V., 1967, METHODS QUANTUM THEO. Udvardi L, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.104436. VANSCHILFGAARDE M, 1999, J APPL PHYS, V85, P5827. Vollmer R, 2000, PHYS REV B, V61, P1303, DOI 10.1103/PhysRevB.61.1303. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WANG CS, 1982, PHYS REV B, V25, P5766, DOI 10.1103/PhysRevB.25.5766. WEINBERGER P, 1990, ELECTRON SCATTERING. WEINERT M, 1994, MAGNETIC MULTILAYERS, P51. Xu JL, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.097201.}",
	number-of-cited-references = "{153}",
	times-cited = "{60}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{25}",
	journal-iso = "{Philos. Mag.}",
	doc-delivery-number = "{036OO}",
	unique-id = "{ISI:000237083900006}"
}

K Carva, I Turek, J Kudrnovsky and O Bengone. Disordered magnetic multilayers: Electron transport within the coherent potential approximation. PHYSICAL REVIEW B 73(14), Duben 2006. BibTeX

@article{ ISI:000237154500061,
	author = "Carva, K and Turek, I and Kudrnovsky, J and Bengone, O",
	title = "{Disordered magnetic multilayers: Electron transport within the coherent potential approximation}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2006}",
	volume = "{73}",
	number = "{14}",
	month = "{APR}",
	abstract = "{We develop an efficient technique for ab initio calculations of the current-perpendicular-to-plane (CPP) electron transport in disordered magnetic multilayers. The method is based on the tight-binding linear muffin-tin orbital theory and the coherent potential approximation (CPA) to treat the substitutional randomness in an effective-medium approach. A formulation of the CPA vertex corrections, giving rise to an incoherent part of the CPP conductance, is described in detail and the numerical implementation is discussed. The developed approach is illustrated on several disordered systems derived from fcc Co-Cu-Co trilayers and its results are compared to those of a supercell technique simulating the randomness in terms of two-dimensional lateral supercells. The overall good agreement of the two techniques proves reliability of the CPA for a number of specific features encountered in disordered multilayers. As another example, results for layered diluted ferromagnetic (Ga, Mn)As semiconductors are reported, including a brief discussion of spin-resolved and incoherent CPP conductances and a comparison to bulk residual resistivities.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Carva, K (Reprint Author), Charles Univ Prague, Dept Elect Struct, Fac Math \& Phys, Karlovu 5, CZ-12116 Prague 2, Czech Republic. Charles Univ Prague, Dept Elect Struct, Fac Math \& Phys, CZ-12116 Prague 2, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. ULP, CNRS, UMR 7504, Inst Phys \& Chim Mat Strasbourg, F-67034 Strasbourg 2, France.}",
	doi = "{10.1103/PhysRevB.73.144421}",
	article-number = "{144421}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{BAND-STRUCTURE; RANDOM ALLOYS; GIANT MAGNETORESISTANCE; METALLIC MULTILAYERS; LAYERED SYSTEMS; GREEN-FUNCTION; BINARY ALLOYS; CONDUCTIVITY; RESISTIVITY; SEMICONDUCTORS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 KUDRNOVSKY, Josef/0000-0002-9968-6748 }",
	cited-references = "{Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Babich M. N., 1988, PHYS REV LETT, V61, P2472. Banhart J, 2002, EUROPHYS LETT, V58, P264, DOI 10.1209/epl/i2002-00632-4. Bass J, 1999, J MAGN MAGN MATER, V200, P274, DOI 10.1016/S0304-8853(99)00316-9. Bengone O, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.092406. BINASCH G, 1989, PHYS REV B, V39, P4828, DOI 10.1103/PhysRevB.39.4828. BUTLER WH, 1985, PHYS REV B, V31, P3260, DOI 10.1103/PhysRevB.31.3260. Chiba D, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.216602. Chiba D, 2004, PHYSICA E, V21, P966, DOI 10.1016/j.physe.2003.11.172. Coehoorn R., 2003, HDB MAGNETIC MAT, V15, P1, DOI 10.1016/S1567-2719(03)15001-9. Datta S., 1995, ELECT TRANSPORT MESO. Drchal V, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.214414. Dulca L, 2000, PHYS REV B, V61, P16502, DOI 10.1103/PhysRevB.61.16502. Ebert H, 1996, PHYS REV B, V54, P8479, DOI 10.1103/PhysRevB.54.8479. Edmonds KW, 2002, APPL PHYS LETT, V81, P4991, DOI 10.1063/1.1529079. ELLIOTT RJ, 1974, REV MOD PHYS, V46, P465, DOI 10.1103/RevModPhys.46.465. GODFRIN EM, 1991, J PHYS-CONDENS MAT, V3, P7843, DOI 10.1088/0953-8984/3/40/005. GUNNARSSON O, 1983, PHYS REV B, V27, P7144, DOI 10.1103/PhysRevB.27.7144. HASS KC, 1984, PHYS REV B, V29, P3697, DOI 10.1103/PhysRevB.29.3697. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. Itoh H, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.174421. KUBO R, 1957, J PHYS SOC JPN, V12, P570, DOI 10.1143/JPSJ.12.570. Kudrnovsky J, 2005, Complex Inorganic Solids: Structural, Stability, and Magnetic Properties of Alloys, P277, DOI 10.1007/0-387-25953-8\_21. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Maca F, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.235209. MacLaren JM, 1999, PHYS REV B, V59, P5470, DOI 10.1103/PhysRevB.59.5470. Maekawa S., 2002, SPIN DEPENDENT TRANS. Matsukura F, 2002, HANDB MAG M, V14, P1, DOI 10.1016/S1567-2719(09)60005-6. Mavropoulos P, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.125104. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. SANCHO MPL, 1985, J PHYS F MET PHYS, V15, P851, DOI 10.1088/0305-4608/15/4/009. Sanvito S, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.054425. Sanvito S, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.267202. Sanvito S, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.165206. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. SOVEN P, 1967, PHYS REV, V156, P809, DOI 10.1103/PhysRev.156.809. Stewart DA, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.014433. SWIHART JC, 1986, PHYS REV LETT, V57, P1181, DOI 10.1103/PhysRevLett.57.1181. Tsymbal EY, 1996, PHYS REV B, V54, P15314, DOI 10.1103/PhysRevB.54.15314. Tsymbal EY, 2000, PHYS REV B, V61, P506, DOI 10.1103/PhysRevB.61.506. Turek I, 2004, J PHYS-CONDENS MAT, V16, pS5607, DOI 10.1088/0953-8984/16/48/017. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. Velev J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.024404. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614. VELICKY B, 1968, PHYS REV, V175, P747, DOI 10.1103/PhysRev.175.747. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Vouille C, 1999, PHYS REV B, V60, P6710, DOI 10.1103/PhysRevB.60.6710. Weinberger P, 1996, J PHYS-CONDENS MAT, V8, P7677, DOI 10.1088/0953-8984/8/41/013. Weinberger P, 2003, PHYS REP, V377, P281, DOI 10.1016/S0370-1573(02)00600-2. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009. Wortmann D, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.075113. Wortmann D, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.165103. Xia K, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.064407.}",
	number-of-cited-references = "{59}",
	times-cited = "{63}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{10}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{037NU}",
	unique-id = "{ISI:000237154500061}"
}

J Rusz, I Turek and M Divis. Ab initio calculations of Curie temperatures in GdX compounds. JOURNAL OF ALLOYS AND COMPOUNDS 408:930-933, 2006. Rare Earths 2004 Conference, Nara, JAPAN, NOV 07-12, 2004. BibTeX

@article{ ISI:000235445300214,
	author = "Rusz, J and Turek, I and Divis, M",
	title = "{Ab initio calculations of Curie temperatures in GdX compounds}",
	journal = "{JOURNAL OF ALLOYS AND COMPOUNDS}",
	year = "{2006}",
	volume = "{408}",
	pages = "{930-933}",
	month = "{FEB 9}",
	note = "{Rare Earths 2004 Conference, Nara, JAPAN, NOV 07-12, 2004}",
	organization = "{Rare Earth Soc Japan; ICFE 05, Org Comm; Japan Soc Promot Sci; Commemorat Org Japan World Exposit 70; Nara Convent Bur; Iwatani Naoji Fdn; Murata Sci Fdn; Izumi Sci \& Technol Fdn; Kao Fdn Arts \& Sci; Nippon Sheet Glass Fdn Mat Sci \& Engn; Fdn Promot Mat Sci \& Technol Japan; Asahi Glass Fdn}",
	abstract = "{We present calculations of Curie temperatures of selected GdX (X = Zn, Rh, Mg, Cd) compounds with a cubic CsCl structure. Exchange interactions are obtained from ab initio electronic structure calculations in the framework of density functional theory. Critical temperatures are evaluated using two approaches, namely the mean-field approximation (MFA) and a more involved, random phase approximation (RPA). Calculated critical temperatures serve as theoretical upper estimate (MFA) and lower estimate (RPA) of an exact critical temperature given by the Heisenberg model. Obtained results are in fair agreement with experimental values. (c) 2005 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE SA}",
	address = "{PO BOX 564, 1001 LAUSANNE, SWITZERLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Charles Univ Prague, Fac Math \& Phys, Dept Elect Struct, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic.}",
	doi = "{10.1016/j.jallcom.2004.12.099}",
	issn = "{0925-8388}",
	eissn = "{1873-4669}",
	keywords = "{critical temperature; density functional theory; Heisenberg model; random phase approximation; mean-field approximation; GdZn; GdRh; GdMg; GdCd}",
	research-areas = "{Chemistry; Materials Science; Metallurgy \& Metallurgical Engineering}",
	web-of-science-categories = "{Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy \& Metallurgical Engineering}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Rusz, Jan/A-3324-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Rusz, Jan/0000-0002-0074-1349 }",
	cited-references = "{Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. BUSCHOW K, 1979, REP PROG PHYS, V42, P1373, DOI 10.1088/0034-4885/42/8/003. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. MERMIN ND, 1965, PHYS REV, V137, P1441. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Rusz J, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.174408. SINAI YG, 1982, THEORY PHSAE TRANSIT. Turek I, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224431. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Tyablikov S. V., 1967, METHODS QUANTUM THEO. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012.}",
	number-of-cited-references = "{12}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{6}",
	journal-iso = "{J. Alloy. Compd.}",
	doc-delivery-number = "{013YG}",
	unique-id = "{ISI:000235445300214}"
}

J Svoboda, I Turek and FD Fischer. Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. PHILOSOPHICAL MAGAZINE 85(31):3699-3707, 2005. BibTeX

@article{ ISI:000233537700005,
	author = "Svoboda, J and Turek, I and Fischer, FD",
	title = "{Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences}",
	journal = "{PHILOSOPHICAL MAGAZINE}",
	year = "{2005}",
	volume = "{85}",
	number = "{31}",
	pages = "{3699-3707}",
	month = "{NOV 1}",
	abstract = "{An extremal principle is formulated for thermodynamic systems near equilibrium subjected to various external conditions. It is shown that the principle describes unambiguously the kinetics of the thermodynamic system and replaces classical phenomenological equations. The global formulation of the principle makes it possible i) to introduce discrete characteristic parameters for the proper description of the state and evolution of the system, ii) to take into account constraints amongst the characteristic parameters of the local or global character and iii) to derive the evolution equations for the characteristic parameters. These facts turn the principle into an effective tool for the treatment of non-equilibrium thermodynamic systems.}",
	publisher = "{TAYLOR \& FRANCIS LTD}",
	address = "{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Svoboda, J (Reprint Author), Acad Sci Czech Republ, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Univ Leoben, Inst Mech, A-8700 Leoben, Austria. Austrian Acad Sci, Erich Schmid Inst Mat Sci, A-8700 Leoben, Austria.}",
	doi = "{10.1080/14786430500267760}",
	issn = "{1478-6435}",
	keywords-plus = "{MULTICOMPONENT MULTIPHASE SYSTEMS; MICROSTRUCTURE EVOLUTION; IRREVERSIBLE-PROCESSES; ENGINEERING MATERIALS; DIFFUSION; FLUCTUATIONS; TEMPERATURE; FORMULATION; KINETICS; GROWTH}",
	research-areas = "{Materials Science; Mechanics; Metallurgy \& Metallurgical Engineering; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mechanics; Metallurgy \& Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Svoboda, Jiri/F-9810-2014 Turek, Ilja/G-5553-2014}",
	cited-references = "{Callen H. B., 1960, THERMODYNAMICS. Cocks ACF, 1999, ADV APPL MECH, V36, P81. DONNELLY RJ, 1967, NONEQUILIBRIUM THERM. Fischer FD, 2003, PHILOS MAG, V83, P1075, DOI 10.1080/0141861031000068966. GARROD C, 1984, J NON-EQUIL THERMODY, V9, P97, DOI 10.1515/jnet.1984.9.2.97. Gill SPA, 2001, INT J PLASTICITY, V17, P669, DOI 10.1016/S0749-6419(00)00066-8. GRABERT H, 1979, PHYS REV A, V19, P1747, DOI 10.1103/PhysRevA.19.1747. GRAHAM R, 1977, Z PHYS B CON MAT, V26, P281, DOI 10.1007/BF01312935. Groot SR, 1962, NONEQUILIBRIUM THERM. GYARMATI I, 1970, NONEQUILIBRUIM THERM. Jou D., 1993, EXTENDED IRREVERSIBL. Kleidon A., 2005, NONEQUILIBRIUM THERM. Kozeschnik E, 2004, MAT SCI ENG A-STRUCT, V385, P157, DOI 10.1016/j.msea.2004.06.016. MULLR I, 1993, EXTENDED THERMODYNAM. NETTLETON RE, 1986, J PHYS A-MATH GEN, V19, pL295, DOI 10.1088/0305-4470/19/5/014. Onsager L, 1931, PHYS REV, V37, P405, DOI 10.1103/PhysRev.37.405. Prigogine I, 1967, INTRO THERMODYNAMICS. Rajagopal KR, 2004, Z ANGEW MATH PHYS, V55, P861, DOI 10.1007/s00033-004-4019-6. SIENIUTYCZ S, 1989, PHYS REV A, V40, P348, DOI 10.1103/PhysRevA.40.348. Svoboda J, 2000, ACTA MATER, V48, P2519, DOI 10.1016/S1359-6454(00)00078-1. Svoboda J, 2004, MAT SCI ENG A-STRUCT, V385, P166, DOI 10.1016/j.msea.2004.06.018. SVOBODA J, 1990, ACTA METALL MATER, V38, P573, DOI 10.1016/0956-7151(90)90211-X. Svoboda J, 2004, ACTA MATER, V52, P959, DOI 10.1016/j.actamat.2003.10.030. Svoboda J, 2002, ACTA MATER, V50, P1369, DOI 10.1016/S1359-6454(01)00443-8. SVOBODA J, 1991, PHILOS MAG B, V64, P749, DOI 10.1080/13642819108207635. Truesdell C., 1984, RATIONAL THERMODYNAM, P365. Vazquez F, 1997, PHYS REV E, V55, P5033, DOI 10.1103/PhysRevE.55.5033. Ziegler H., 1961, ING ARCH, V30, P410, DOI 10.1007/BF00531783. ZIEGLER H, 1963, PROGR SOLID MECH, V4, P91.}",
	number-of-cited-references = "{29}",
	times-cited = "{97}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{16}",
	journal-iso = "{Philos. Mag.}",
	doc-delivery-number = "{987SN}",
	unique-id = "{ISI:000233537700005}"
}

L Bergqvist, O Eriksson, J Kudrnovsky, V Drchal, A Bergman, L Nordstrom and I Turek. Magnetic properties and disorder effects in diluted magnetic semiconductors. PHYSICAL REVIEW B 72(19), Listopad 2005. BibTeX

@article{ ISI:000233603700064,
	author = "Bergqvist, L and Eriksson, O and Kudrnovsky, J and Drchal, V and Bergman, A and Nordstrom, L and Turek, I",
	title = "{Magnetic properties and disorder effects in diluted magnetic semiconductors}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2005}",
	volume = "{72}",
	number = "{19}",
	month = "{NOV}",
	abstract = "{We present calculations of the exchange interactions and critical temperatures for several diluted magnetic semiconductor systems. It is shown that the exchange interactions are dominated by short-ranged interactions that have a strong directional dependence. Using a combination of first-principles calculations of the exchange interactions together with Monte Carlo simulations of the classical Heisenberg model, in which the positional disorder and spin fluctuations are properly included, the calculated critical temperatures are in good agreement with experimantal observations. It is shown that agreement between theory and experiment, as regards ordering temperatures, is obtained only when the magnetic atoms are randomly positioned in a simulation cell which proves that disorder effects play a very important role. The effect of strong electron-electron interaction has been studied by means of the LSDA+U scheme. We investigate in detail the nature of the anisotropic exchange interactions by means of a Fermi surface analysis.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Bergqvist, L (Reprint Author), Uppsala Univ, Dept Phys, Box 530, S-75121 Uppsala, Sweden. Uppsala Univ, Dept Phys, S-75121 Uppsala, Sweden. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.72.195210}",
	article-number = "{195210}",
	issn = "{1098-0121}",
	keywords-plus = "{ROOM-TEMPERATURE FERROMAGNETISM; EXCHANGE INTERACTIONS; CURIE-TEMPERATURE; DOPED ZNO; GA1-XMNXAS; ALLOYS; FILMS; MN}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bergman, Anders/H-7996-2012 Eriksson, Olle/E-3265-2014 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 Bergqvist, Lars/J-5282-2014}",
	orcid-numbers = "{Bergman, Anders/0000-0002-5134-1978 Eriksson, Olle/0000-0001-5111-1374 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417 Bergqvist, Lars/0000-0003-4341-5663}",
	cited-references = "{Alvarez G, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.277202. ANDERSON PW, 1963, SOLID STATE PHYS, V14, P99. Ando K, 2003, APPL PHYS LETT, V82, P100, DOI 10.1063/1.1534618. Bergqvist L, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.137202. Bergqvist L, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.205201. Boselli MA, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.085319. Bouzerar G, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014410. Bouzerar G, 2005, EUROPHYS LETT, V69, P812, DOI 10.1209/epl/i2004-10473-1. Bouzerar G, 2004, APPL PHYS LETT, V85, P4941, DOI 10.1063/1.1826226. Bouzerar G, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.081203. BOUZERAR G, COMMUNICATION. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. Cho SL, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.257203. DATTA S, 1990, APPL PHYS LETT, V56, P665, DOI 10.1063/1.102730. DIETL T, 2002, SEMICOND SCI TECH, V17, P37. Edmonds KW, 2002, APPL PHYS LETT, V81, P3010, DOI 10.1063/1.1512822. Edmonds KW, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.037201. Edmonds KW, 2002, APPL PHYS LETT, V81, P4991, DOI 10.1063/1.1529079. Hilbert S, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.165203. KIRKPATRICK S, 1973, REV MOD PHYS, V45, P574, DOI 10.1103/RevModPhys.45.574. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. Landau D. P., 2000, GUIDE MONTE CARLO SI. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Matsumoto Y, 2001, SCIENCE, V291, P854, DOI 10.1126/science.1056186. Ogale SB, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.077205. Ohno H, 1998, SCIENCE, V281, P951, DOI 10.1126/science.281.5379.951. Prinz GA, 1998, SCIENCE, V282, P1660, DOI 10.1126/science.282.5394.1660. Reed ML, 2001, APPL PHYS LETT, V79, P3473, DOI 10.1063/1.1419231. Risbud AS, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.205202. Rosengaard NM, 1997, PHYS REV B, V55, P14975, DOI 10.1103/PhysRevB.55.14975. Saito H, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.207202. Sandratskii LM, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.195203. Sandratskii LM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.134435. Sandratskii LM, 2003, J PHYS-CONDENS MAT, V15, pL585, DOI 10.1088/0953-8984/15/37/L05. Sato K, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.201202. Sato K, 2003, EUROPHYS LETT, V61, P403, DOI 10.1209/epl/i2003-00191-8. Sharma P, 2003, NAT MATER, V2, P673, DOI 10.1038/nmat984. Shick AB, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.125207. Sluiter MHF, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.187204. Theodoropoulou N, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.107203. Timm C, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.137201. Turek I., 1997, ELECT STRUCTURE DISO. Ueda K, 2001, APPL PHYS LETT, V79, P988, DOI 10.1063/1.1384478. Wierzbowska M, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.235209. Xu JL, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.097201. ZHAO WJ, 2003, PHYS REV LETT, V90.}",
	number-of-cited-references = "{48}",
	times-cited = "{38}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{6}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{988LW}",
	unique-id = "{ISI:000233603700064}"
}

J Rusz, I Turek and M Divis. Random-phase approximation for critical temperatures of collinear magnets with multiple sublattices: GdX compounds (X=Mg,Rh,Ni,Pd). PHYSICAL REVIEW B 71(17), Květen 2005. BibTeX

@article{ ISI:000229935000056,
	author = "Rusz, J and Turek, I and Divis, M",
	title = "{Random-phase approximation for critical temperatures of collinear magnets with multiple sublattices: GdX compounds (X=Mg,Rh,Ni,Pd)}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2005}",
	volume = "{71}",
	number = "{17}",
	month = "{MAY}",
	abstract = "{An efficient scheme for evaluating the critical temperatures of ferromagnetic, antiferromagnetic, and ferrimagnetic crystals with multiple sublattices is presented. The approach is based on a pairwise Heisenberg Hamiltonian and a random-phase approximation (Tyablikov's decoupling) for magnon Green's functions. The pair exchange interactions are derived from self-consistent electronic structure calculations using a magnetic force theorem. The developed technique is applied to hexagonal gadolinium and its selected intermetallic compounds GdX (X=Mg,Rh,Ni,Pd) with CsCl and CrB structures. The calculated critical temperatures are quite sensitive to a neglect of the nonmagnetic (X) element; their values are in a fair agreement with experiment.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Charles Univ Prague, Fac Math \& Phys, Dept Elect Struct, Ke Karlovu 5, CR-12116 Prague, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Dept Elect Struct, CR-12116 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Prague 16253, Czech Republic.}",
	doi = "{10.1103/PhysRevB.71.174408}",
	article-number = "{174408}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{INTERMETALLIC COMPOUNDS; EXCHANGE INTERACTIONS; METALS; ALLOYS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Rusz, Jan/A-3324-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Rusz, Jan/0000-0002-0074-1349 }",
	cited-references = "{Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. BANISTER JR, 1954, PHYS REV, V94, P1140, DOI 10.1103/PhysRev.94.1140. Bergqvist L, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.137202. Blaha P., 2001, WIEN2K. BUSCHOW K, 1979, REP PROG PHYS, V42, P1373, DOI 10.1088/0034-4885/42/8/003. CALLEN HB, 1963, PHYS REV, V130, P890, DOI 10.1103/PhysRev.130.890. Divis M, 2003, ACTA PHYS POL B, V34, P1445. Divis M, 2002, CZECH J PHYS, V52, P283, DOI 10.1023/A:1014452619918. Divis M, 2002, CZECH J PHYS, V52, P247, DOI 10.1023/A:1014436116284. Foulkes WMC, 2001, REV MOD PHYS, V73, P33, DOI 10.1103/RevModPhys.73.33. FRANEK P, 2002, THESIS C U PRAGUE, P95122. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. Jensen J., 1991, RARE EARTH MAGNETISM. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. LINES ME, 1964, PHYS REV A-GEN PHYS, V135, P1336, DOI 10.1103/PhysRev.135.A1336. MAJLIS N, 2001, QUANTUM THEORY MAGNE. Mallik R, 1997, PHYS REV B, V55, P8369, DOI 10.1103/PhysRevB.55.8369. MERMIN ND, 1965, PHYS REV, V137, P1441. Mihalik M, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.134405. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Paulose PL, 1996, PHYSICA B, V223-24, P382, DOI 10.1016/0921-4526(96)00129-9. Richter M, 1998, J PHYS D APPL PHYS, V31, P1017, DOI 10.1088/0022-3727/31/9/002. Sandratskii LM, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224432. Sandratskii LM, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.214402. Sasioglu E, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.024427. YaG Sinai, 1982, THEORY PHASE TRANSIT. Turek I, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224431. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I., 1997, ELECT STRUCTURE DISO. TYABLIKOV SV, 1969, METHODS QUANTUM THEO. YABLONSKIY DA, 1991, PHYS REV B, V44, P4467, DOI 10.1103/PhysRevB.44.4467.}",
	number-of-cited-references = "{34}",
	times-cited = "{30}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{937OI}",
	unique-id = "{ISI:000229935000056}"
}

S Khmelevskyi, I Turek and P Mohn. Interaction between itinerant and localized electrons at finite temperatures in pure hcp Gd: an ab initio DLM study. PHYSICA B-CONDENSED MATTER 359:145-147, 2005. International Conference on Strongly Correlated Electron Systems (SCES 04), Karlsruhe, GERMANY, JUL 26-30, 2004. BibTeX

@article{ ISI:000229654400045,
	author = "Khmelevskyi, S and Turek, I and Mohn, P",
	title = "{Interaction between itinerant and localized electrons at finite temperatures in pure hcp Gd: an ab initio DLM study}",
	journal = "{PHYSICA B-CONDENSED MATTER}",
	year = "{2005}",
	volume = "{359}",
	pages = "{145-147}",
	month = "{APR 30}",
	note = "{International Conference on Strongly Correlated Electron Systems (SCES 04), Karlsruhe, GERMANY, JUL 26-30, 2004}",
	abstract = "{Using ab initio band-structure calculations and employing the disordered local moment formalism we study the 4f-moment induced magnetic splitting of the valence band in pure hcp Gd metal at zero and critical temperature T. We find that the local exchange splitting of the valence band persists above T-c, which is in strong disagreement with the conventional Stoner picture. Our results favor the strong coupling scenario of the interaction between the localized and itinerant part of the Gd electronic system. Our analysis provides a theoretical background for the discussion of recent photoemission experiments. (c) 2005 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Khmelevskyi, S (Reprint Author), Vienna Univ Technol, Ctr Computat Mat Sci, Getreidmarkt 5-136, A-1060 Vienna, Austria. Vienna Univ Technol, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Charles Univ, Dept Elect Struct, Prague, Czech Republic.}",
	doi = "{10.1016/j.physb.2005.01.017}",
	issn = "{0921-4526}",
	keywords = "{Gd; localized and itinerant magnetism; electronic structure}",
	keywords-plus = "{SURFACE-STATE; GADOLINIUM; GD(0001)}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 }",
	orcid-numbers = "{Khmelevskyi, Sergii/0000-0001-5630-7835}",
	cited-references = "{Donath M, 1996, PHYS REV LETT, V77, P5138, DOI 10.1103/PhysRevLett.77.5138. ERIKSSON O, 1995, PHYS REV B, V52, P4420, DOI 10.1103/PhysRevB.52.4420. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. Jensen J., 1991, RARE EARTH MAGNETISM. Khmelevskyi S, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.037201. KHMELEVSKYI S, 2004, PHYS REV B, V64, DOI UNSP 140404. KIM B, 1992, PHYS REV LETT, V68, P1931, DOI 10.1103/PhysRevLett.68.1931. LI DQ, 1992, PHYS REV B, V45, P7272, DOI 10.1103/PhysRevB.45.7272. Lindbaum A, 2002, HANDB MAG M, V14, P307, DOI 10.1016/S1567-2719(09)60008-1. Maiti K, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.167205. SANDRATSKII LM, 1993, EUROPHYS LETT, V23, P661, DOI 10.1209/0295-5075/23/9/007. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Weschke E, 1996, PHYS REV LETT, V77, P3415, DOI 10.1103/PhysRevLett.77.3415.}",
	number-of-cited-references = "{14}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{Physica B}",
	doc-delivery-number = "{933SY}",
	unique-id = "{ISI:000229654400045}"
}

I Turek, J Rusz and M Divis. Electronic structure and volume magnetostriction of rare-earth metals and compounds. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 290(1, SI):357-363, Duben 2005. 2nd Joint European Magnetic Symposia (JEMS 04), Dresden, GERMANY, SEP 05-10, 2004. BibTeX

@article{ ISI:000228837600087,
	author = "Turek, I and Rusz, J and Divis, M",
	title = "{Electronic structure and volume magnetostriction of rare-earth metals and compounds}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2005}",
	volume = "{290}",
	number = "{1, SI}",
	pages = "{357-363}",
	month = "{APR}",
	note = "{2nd Joint European Magnetic Symposia (JEMS 04), Dresden, GERMANY, SEP 05-10, 2004}",
	abstract = "{A first-principle theory of spontaneous volume magnetostriction is presented. It is based on self-consistent electronic structure calculations for a magnetically ordered ground state and a disordered local moment state. The effect of highly localized 4f orbitals of rare-earth (R) atoms is taken into account by an open-core treatment within the local spin-density approximation. The theory is applied to hexagonal gadolinium and to selected intermetallic compounds with the cubic C15 Laves structure: RCo2 (R = Gd, Dy, Er) and GdAl2. The results are compared to those of experiment and discussed in terms of. (i) magnitudes of the local moments and (ii) volume-dependent exchange interactions. (c) 2004 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{AS CR, Inst Phys Mat, Zizkova 22, Brno 61662, Czech Republic. AS CR, Inst Phys Mat, Brno 61662, Czech Republic. Charles Univ Prague, Fac Math \& Phys, CR-12116 Prague, Czech Republic.}",
	doi = "{10.1016/j.jmmm.2004.11.260}",
	issn = "{0304-8853}",
	eissn = "{1873-4766}",
	keywords = "{magnetostriction; density functional calculations; exchange interactions; rare earth; intermetallic compounds}",
	keywords-plus = "{EXCHANGE INTERACTIONS; MAGNETISM; GADOLINIUM; TEMPERATURE; DEPENDENCE; ANOMALIES; SURFACE; COBALT; GD}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Rusz, Jan/A-3324-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Rusz, Jan/0000-0002-0074-1349 }",
	cited-references = "{ABELL JS, 1983, J MAGN MAGN MATER, V31-4, P247, DOI 10.1016/0304-8853(83)90235-4. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Andreev A. V., 1995, HANDB MAG M, V8, P59, DOI 10.1016/S1567-2719(05)80031-9. Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. Blaha P., 2001, WIEN2K AUGMENTED PLA. DIMMOCK JO, 1964, PHYS REV LETT, V13, P750, DOI 10.1103/PhysRevLett.13.750. Duc NH, 1999, HANDB MAG M, V12, P259, DOI 10.1016/S1567-2719(99)12007-9. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. JAAKKOLA SM, 1980, SOLID STATE COMMUN, V36, P275, DOI 10.1016/0038-1098(80)90276-8. JANAK JF, 1976, PHYS REV B, V14, P4199, DOI 10.1103/PhysRevB.14.4199. Khmelevskyi S, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.132401. Khmelevskyi S, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.140404. Khmelevskyi S, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.037201. Khmelevskyi S, 2002, J PHYS-CONDENS MAT, V14, P13799, DOI 10.1088/0953-8984/14/50/307. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. Kurz P, 2002, J PHYS-CONDENS MAT, V14, P6353, DOI 10.1088/0953-8984/14/25/305. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Lindbaum A, 2002, HANDB MAG M, V14, P307, DOI 10.1016/S1567-2719(09)60008-1. Maiti K, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.167205. Nitzsche U, 2004, J MAGN MAGN MATER, V272, pE249, DOI 10.1016/j.jmmm.2003.12.399. NORDSTROM L, 1992, J MAGN MAGN MATER, V104, P1378, DOI 10.1016/0304-8853(92)90627-Z. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Perlov AY, 2000, PHYS REV B, V61, P4070, DOI 10.1103/PhysRevB.61.4070. Richter M, 1998, J PHYS D APPL PHYS, V31, P1017, DOI 10.1088/0022-3727/31/9/002. Syshchenko O, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.054433. Turek I, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224431. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I., 1997, ELECT STRUCTURE DISO. Tyablikov S. V., 1967, METHODS QUANTUM THEO. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WASSERMAN EF, 1990, FERROMAGNETIC MATERI, V5, P237. Weschke E, 1996, PHYS REV LETT, V77, P3415, DOI 10.1103/PhysRevLett.77.3415.}",
	number-of-cited-references = "{33}",
	times-cited = "{9}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{922KU}",
	unique-id = "{ISI:000228837600087}"
}

J Kudrnovsky, V Drchal, F Maca, I Turek, G Bouzerar and P Bruno. Ab-initio study of diluted magnetic semiconductors. In PEA Turchi, A Gonis, K Rajan and A Meike (eds.). Complex Inorganic Solids: Structural, Stability, and Magnetic Properties of Alloys. 2005, 277-293. 3rd International Alloy Conference (IAC-3), Estoril Sol, PORTUGAL, JUN 30-JUL 05, 2002. BibTeX

@inproceedings{ ISI:000230778500021,
	author = "Kudrnovsky, J and Drchal, V and Maca, F and Turek, I and Bouzerar, G and Bruno, P",
	editor = "{Turchi, PEA and Gonis, A and Rajan, K and Meike, A}",
	title = "{Ab-initio study of diluted magnetic semiconductors}",
	booktitle = "{Complex Inorganic Solids: Structural, Stability, and Magnetic Properties of Alloys}",
	year = "{2005}",
	pages = "{277-293}",
	note = "{3rd International Alloy Conference (IAC-3), Estoril Sol, PORTUGAL, JUN 30-JUL 05, 2002}",
	organization = "{USA Res Off Phys Div; Mat ResInst, Lawrence Livermore Natl Lab; US Off Naval Res Mar Div; United Engn Fdn}",
	publisher = "{SPRINGER}",
	address = "{233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Na Slovance 2, CZ-18221 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague, Czech Republic.}",
	doi = "{10.1007/0-387-25953-8\_21}",
	isbn = "{0-387-24811-0}",
	keywords-plus = "{EXCHANGE INTERACTIONS; ALLOYS; FERROMAGNETISM; GA1-XMNXAS; DISORDER; METALS; GAAS}",
	research-areas = "{Metallurgy \& Metallurgical Engineering; Materials Science}",
	web-of-science-categories = "{Metallurgy \& Metallurgical Engineering; Materials Science, Characterization \& Testing}",
	researcherid-numbers = "{Maca, Frantisek/G-4467-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. Akinaga H, 2000, JPN J APPL PHYS 2, V39, pL1118, DOI 10.1143/JJAP.39.L1118. Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. BLACKMAN JA, 1969, J PHYS PART C SOLID, V2, P1670, DOI 10.1088/0022-3719/2/9/317. Bouzerar G, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.153203. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. Dietl T, 2000, SCIENCE, V287, P1019, DOI 10.1126/science.287.5455.1019. GALANAKIS I, UNPUB PHYS REV B. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. KONIG K, 2002, ELECT STRUCTURE MAGN. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. Levy PM, 1998, PHYS REV B, V58, P5588, DOI 10.1103/PhysRevB.58.5588. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Linnarsson M, 1997, PHYS REV B, V55, P6938, DOI 10.1103/PhysRevB.55.6938. Masek J, 2001, ACTA PHYS POL A, V100, P319. MASEK J, COMMUNICATION. Ohno H, 1998, SCIENCE, V281, P951, DOI 10.1126/science.281.5379.951. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. Park YD, 2002, SCIENCE, V295, P651, DOI 10.1126/science.1066348. Potashnik SJ, 2001, APPL PHYS LETT, V79, P1495, DOI 10.1063/1.1398619. SANVITO S, CONDMAT0111300. Schliemann J, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.137201. Shirai M, 2001, PHYSICA E, V10, P143, DOI 10.1016/S1386-9477(01)00070-4. Turek I, 2000, LECT NOTES PHYS, V535, P349. TURKE I, 1997, ELECT STRUCTURE DISO. van Schilfgaarde M, 2001, PHYS REV B, V63. Zhao QX, 1999, PHYS REV B, V60, pR2193, DOI 10.1103/PhysRevB.60.R2193.}",
	number-of-cited-references = "{30}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{BCQ53}",
	unique-id = "{ISI:000230778500021}"
}

J Kudrnovsky, L Bergqvist, O Eriksson, V Drchal, I Turek and G Bouzerar. Exchange interactions and magnetic percolation in diluted magnetic semiconductors. In M Donath and W Nolting (eds.). Local-Moment Ferromagnets: UNIQUE PROPERTIES FOR MODERN APPLICATIONS 678. 2005, 131-145. International Conference on Local-Moment Ferromagnets - Unique Properties for Modern Applications, Wandlitz, GERMANY, MAR 15-18, 2004. BibTeX

@inproceedings{ ISI:000234403700008,
	author = "Kudrnovsky, J and Bergqvist, L and Eriksson, O and Drchal, V and Turek, I and Bouzerar, G",
	editor = "{Donath, M and Nolting, W}",
	title = "{Exchange interactions and magnetic percolation in diluted magnetic semiconductors}",
	booktitle = "{Local-Moment Ferromagnets: UNIQUE PROPERTIES FOR MODERN APPLICATIONS}",
	series = "{LECTURE NOTES IN PHYSICS}",
	year = "{2005}",
	volume = "{678}",
	pages = "{131-145}",
	note = "{International Conference on Local-Moment Ferromagnets - Unique Properties for Modern Applications, Wandlitz, GERMANY, MAR 15-18, 2004}",
	organization = "{Deutsch Forsch Gemeinsch}",
	abstract = "{We propose a theory that combines first-principles evaluations of inter-atomic exchange interactions with a classical Heisenberg model and Monte Carlo simulations. Exchange interactions are determined using the magnetic force theorem and the one-electron Green functions. The magnetic properties of diluted magnetic semiconductors are dominated by short ranged interatomic exchange interactions that; have a strong directional dependence. We show that; critical temperatures of a broad range of diluted magnetic semiconductors, involving Mn-doped GaAs and GaN as well as Cr-doped ZnTe, arc reproduced with a good accuracy only when the magnetic atoms arc randomly positioned on the Ga (Zn) sites, whereas in ordered structure of the magnetic atoms results in critical temperatures that are too high. This suggests that the ordering of diluted magnetic semiconductors is heavily influenced by magnetic percolation, and that the measured critical ternperatures should be very sensitive to the details of the sample preparation, in agreement with observations.}",
	publisher = "{SPRINGER-VERLAG BERLIN}",
	address = "{HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Prague, Czech Republic.}",
	doi = "{10.1007/11417255\_9}",
	issn = "{0075-8450}",
	isbn = "{3-540-27286-0}",
	keywords-plus = "{AB-INITIO THEORY; CURIE-TEMPERATURE; SPIN DYNAMICS; ALLOYS; STATES}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 Bergqvist, Lars/J-5282-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 Bergqvist, Lars/0000-0003-4341-5663}",
	cited-references = "{Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. Bergqvist L, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.137202. Bergqvist L, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.205201. BLACKSHE.PL, 1970, COMBUST SCI TECHNOL, V2, P1, DOI 10.1080/00102207008952229. Bouzerar G, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014410. Bouzerar G, 2005, EUROPHYS LETT, V69, P812, DOI 10.1209/epl/i2004-10473-1. Bouzerar G, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.205311. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. DEDERICHS PH, 1984, PHYS REV LETT, V53, P2512, DOI 10.1103/PhysRevLett.53.2512. DEGENNES PG, 1962, J PHYS-PARIS, V23, P630, DOI 10.1051/jphysrad:019620023010063000. Dietl T, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.195205. Edmonds KW, 2002, APPL PHYS LETT, V81, P4991, DOI 10.1063/1.1529079. Halilov SV, 1998, PHYS REV B, V58, P293, DOI 10.1103/PhysRevB.58.293. HAYASHI T, 2001, APPL PHYS LETT, V78, P3271. Kaminski A, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.235210. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Kudrnovsky J, 2000, LECT NOTES PHYS, V535, P313. Landau D. P., 2000, GUIDE MONTE CARLO SI. Levy PM, 1998, PHYS REV B, V58, P5588, DOI 10.1103/PhysRevB.58.5588. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Ohno H, 1998, SCIENCE, V281, P951, DOI 10.1126/science.281.5379.951. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. Reed ML, 2001, APPL PHYS LETT, V79, P3473, DOI 10.1063/1.1419231. Saito H, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.207202. SANDRATSKII LM, 1991, J PHYS-CONDENS MAT, V3, P8565, DOI 10.1088/0953-8984/3/44/004. Sandratskii LM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.134435. Turek I, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224431. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. Zajaac M, 2001, APPL PHYS LETT, V79, P2432, DOI 10.1063/1.1406558. Ziman J.M., 1979, MODELS DISORDER.}",
	number-of-cited-references = "{34}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{BDN09}",
	unique-id = "{ISI:000234403700008}"
}

O Eriksson, L Bergqvist, B Sanyal, J Kudrnovsky, V Drchal, P Korzhavyi and I Turek. Electronic structure and magnetism of diluted magnetic semiconductors. JOURNAL OF PHYSICS-CONDENSED MATTER 16(48, SI):S5481-S5489, 2004. 1st International Conference on Nanospintronics Design and Realization (ICNDR 2004), Kyoto, JAPAN, MAY 24-28, 2004. BibTeX

@article{ ISI:000226025300003,
	author = "Eriksson, O and Bergqvist, L and Sanyal, B and Kudrnovsky, J and Drchal, V and Korzhavyi, P and Turek, I",
	title = "{Electronic structure and magnetism of diluted magnetic semiconductors}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{2004}",
	volume = "{16}",
	number = "{48, SI}",
	pages = "{S5481-S5489}",
	month = "{DEC 8}",
	note = "{1st International Conference on Nanospintronics Design and Realization (ICNDR 2004), Kyoto, JAPAN, MAY 24-28, 2004}",
	organization = "{Nanospintron Design \& Realizat Project Member}",
	abstract = "{The electronic structure and magnetism of selected diluted magnetic semiconductors (DMS) is reviewed. It is argued that the effect of antisite defects plays an important role in the magnetism of DMS materials and that these defects lower the saturation moment and ordering temperature. We also show that the interatomic exchange of these materials is short ranged. By combining first principles calculations of interatomic exchange interactions with a classical Heisenberg model and Monte Carlo simulations, we show that-the observed critical temperatures of a broad range of diluted magnetic semiconductors, involving Mn-doped GaAs and GaN as well as Cr-doped ZnTe, are reproduced with good accuracy. We show that agreement between theory and experiment is obtained only when the magnetic atoms are randomly positioned on the Ga (or Zn) sites. This suggests that the ordering of DMS materials is heavily influenced by magnetic percolation and that the measured critical temperatures should be very sensitive to details in the sample preparation, in agreement with observations.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Eriksson, O (Reprint Author), Uppsala Univ, Dept Phys, Box 530, S-75121 Uppsala, Sweden. Uppsala Univ, Dept Phys, S-75121 Uppsala, Sweden. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Royal Inst Technol, Dept Mat Sci, SE-10044 Stockholm, Sweden. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1088/0953-8984/16/48/002}",
	article-number = "{PII S0953-8984(04)81677-1}",
	issn = "{0953-8984}",
	keywords-plus = "{FERROMAGNETISM; TEMPERATURE; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Eriksson, Olle/E-3265-2014 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014 Bergqvist, Lars/J-5282-2014 }",
	orcid-numbers = "{Eriksson, Olle/0000-0001-5111-1374 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417 Bergqvist, Lars/0000-0003-4341-5663 Korzhavyi, Pavel/0000-0002-9920-5393}",
	cited-references = "{Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. Bergqvist L, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.205201. BERGQVIST L, PHYS REV LETT, V93. Boselli MA, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.085319. DEDERICHS PH, 2004, IN PRESS PHYS REV B. Dietl T, 2002, SEMICOND SCI TECH, V17, P377, DOI 10.1088/0268-1242/17/4/310. Edmonds KW, 2002, APPL PHYS LETT, V81, P4991, DOI 10.1063/1.1529079. Grandidier B, 2000, APPL PHYS LETT, V77, P4001, DOI 10.1063/1.1322052. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HAYASHI T, 2001, APPL PHYS LETT, V78, P3271. KORZHAVYI PA, 2002, PHYS REV LETT, V88. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. Landau D. P., 2000, GUIDE MONTE CARLO SI. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. MOHN PH, 2002, INTRO MAGNETISM. Ohno H, 1998, SCIENCE, V281, P951, DOI 10.1126/science.281.5379.951. Prinz GA, 1998, SCIENCE, V282, P1660, DOI 10.1126/science.282.5394.1660. Reed ML, 2001, APPL PHYS LETT, V79, P3473, DOI 10.1063/1.1419231. Rosengaard NM, 1997, PHYS REV B, V55, P14975, DOI 10.1103/PhysRevB.55.14975. Saito H, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.207202. Sandratskii LM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.134435. Sato K, 2003, EUROPHYS LETT, V61, P403, DOI 10.1209/epl/i2003-00191-8. Skriver H., 1984, LMTO METHOD. Theodoropoulou N, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.107203. Wills JM, 2000, LECT NOTES PHYS, V535, P148. Zajaac M, 2001, APPL PHYS LETT, V79, P2432, DOI 10.1063/1.1406558. Zhao YJ, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.047204.}",
	number-of-cited-references = "{27}",
	times-cited = "{15}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{883PH}",
	unique-id = "{ISI:000226025300003}"
}

J Kudrnovsky, V Drchal, I Turek, L Bergqvist, O Eriksson, G Bouzerar, L Sandratskii and P Bruno. Exchange interactions and critical temperatures in diluted magnetic semiconductors. JOURNAL OF PHYSICS-CONDENSED MATTER 16(48, SI):S5571-S5578, 2004. 1st International Conference on Nanospintronics Design and Realization (ICNDR 2004), Kyoto, JAPAN, MAY 24-28, 2004. BibTeX

@article{ ISI:000226025300014,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Bergqvist, L and Eriksson, O and Bouzerar, G and Sandratskii, L and Bruno, P",
	title = "{Exchange interactions and critical temperatures in diluted magnetic semiconductors}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{2004}",
	volume = "{16}",
	number = "{48, SI}",
	pages = "{S5571-S5578}",
	month = "{DEC 8}",
	note = "{1st International Conference on Nanospintronics Design and Realization (ICNDR 2004), Kyoto, JAPAN, MAY 24-28, 2004}",
	organization = "{Nanospintron Design \& Realizat Project Member}",
	abstract = "{A first-principles approach to magnetic properties of diluted magnetic semiconductors (DMS) is presented that is based on the local spin-density approximation (LSDA) as implemented in the framework of the tight-binding linear muffin-tin orbital method, while the effect of randomness is described by the coherent potential approximation. Application of a real-space Green-function formalism yields the exchange pair interactions between distant magnetic atoms that are needed for quantitative studies of magnetic excitations including the Curie temperatures. We have found that the pair exchange interactions exhibit a strong directional dependence and are exponentially damped with increasing distance between magnetic atoms due to disorder and the half-metallic character of the DMS. As a case study we consider (Ga, Mn) As, (Ga, Mn)N, and (Zn, Cr)Te alloys. The calculations demonstrate that inclusion of disorder and, in particular, realistic distances among magnetic impurities, are needed to obtain critical temperatures which are in good agreement with available experiments.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle Saale, Germany. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic. Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden. Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France.}",
	doi = "{10.1088/0953-8984/16/48/013}",
	article-number = "{PII S0953-8984(04)79444-8}",
	issn = "{0953-8984}",
	keywords-plus = "{CURIE-TEMPERATURE}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Eriksson, Olle/E-3265-2014 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014 Bergqvist, Lars/J-5282-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Eriksson, Olle/0000-0001-5111-1374 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417 Bergqvist, Lars/0000-0003-4341-5663}",
	cited-references = "{Bouzerar G, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014410. Bouzerar G, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.205311. DEGENNES PG, 1962, J PHYS-PARIS, V23, P630, DOI 10.1051/jphysrad:019620023010063000. KONIG K, 2003, CONDMAT0111314. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. Landau D. P., 2000, GUIDE MONTE CARLO SI. Levy PM, 1998, PHYS REV B, V58, P5588, DOI 10.1103/PhysRevB.58.5588. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Masek J, 2002, ACTA PHYS POL A, V102, P673. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. Sandratskii LM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.134435. SANDRATSKII LM, 2004, J PHYS-CONDENS MAT, V15, pL585. SANDRATSKII LM, 2004, CONDMAT0404163. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{18}",
	times-cited = "{11}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{883PH}",
	unique-id = "{ISI:000226025300014}"
}

I Turek, J Kudrnovsky, V Drchal and P Weinberger. Residual resistivity of diluted III-V magnetic semiconductors. JOURNAL OF PHYSICS-CONDENSED MATTER 16(48, SI):S5607-S5614, 2004. 1st International Conference on Nanospintronics Design and Realization (ICNDR 2004), Kyoto, JAPAN, MAY 24-28, 2004. BibTeX

@article{ ISI:000226025300018,
	author = "Turek, I and Kudrnovsky, J and Drchal, V and Weinberger, P",
	title = "{Residual resistivity of diluted III-V magnetic semiconductors}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{2004}",
	volume = "{16}",
	number = "{48, SI}",
	pages = "{S5607-S5614}",
	month = "{DEC 8}",
	note = "{1st International Conference on Nanospintronics Design and Realization (ICNDR 2004), Kyoto, JAPAN, MAY 24-28, 2004}",
	organization = "{Nanospintron Design \& Realizat Project Member}",
	abstract = "{The electronic structure and residual resistivity of diluted (Ga, Mn)As magnetic semiconductors are calculated from first principles using the linear muffin-tin orbital method, the coherent potential approximation, and the Kubo-Greenwood linear response theory. Particular attention is paid to the role of native compensating defects such as As antisites and Mn interstitials as well as to different magnetic configurations of the local Mn moments. The order of magnitude of the calculated resistivities compares reasonably well with available experimental data. The concentration variations of the resistivity reflect two basic mechanisms, namely the strength of the impurity scattering and the number of carriers. In agreement with a recent experiment, the calculated resistivities are strongly correlated with the alloy Curie temperatures evaluated in terms of a classical Heisenberg Hamiltonian.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republ, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic. Tech Univ Vienna, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic.}",
	doi = "{10.1088/0953-8984/16/48/017}",
	issn = "{0953-8984}",
	keywords-plus = "{CURIE TEMPERATURES; ALLOYS; FERROMAGNETISM}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. COLES BR, 1962, PROC R SOC LON SER-A, V267, P139, DOI 10.1098/rspa.1962.0088. Dietl T, 2000, SCIENCE, V287, P1019, DOI 10.1126/science.287.5455.1019. Edmonds KW, 2002, APPL PHYS LETT, V81, P4991, DOI 10.1063/1.1529079. Jungwirth T, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.207208. Jungwirth T, 2002, APPL PHYS LETT, V81, P4029, DOI 10.1063/1.1523160. KOZHAVYI PA, 2002, PHYS REV LETT, V88, DOI UNSP 187202. Kudrnovsky J, 2003, J SUPERCOND, V16, P119, DOI 10.1023/A:1023257306608. KUDRNOVSKY J, 2004, PHYS REV B, V69. Maca F, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.235209. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. Park YD, 2002, SCIENCE, V295, P651, DOI 10.1126/science.1066348. Sandratskii LM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.134435. Sato K, 2003, EUROPHYS LETT, V61, P403, DOI 10.1209/epl/i2003-00191-8. SWIHART JC, 1986, PHYS REV LETT, V57, P1181, DOI 10.1103/PhysRevLett.57.1181. Turek I., 1997, ELECT STRUCTURE DISO. TUREK J, 2002, PHYS REV B, V65, DOI UNSP 125101. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WEINBERGER P, 1990, ELECT SCATTERING THE.}",
	number-of-cited-references = "{22}",
	times-cited = "{18}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{883PH}",
	unique-id = "{ISI:000226025300018}"
}

P Vlaic, M Alouani, H Dreysse, O Bengone and I Turek. Perpendicular-current giant magnetoresistance of M/Cu/M(001) junctions (M=Fe, Co, or Ni): An ab initio study. JOURNAL OF APPLIED PHYSICS 96(8):4352-4356, 2004. BibTeX

@article{ ISI:000224277800048,
	author = "Vlaic, P and Alouani, M and Dreysse, H and Bengone, O and Turek, I",
	title = "{Perpendicular-current giant magnetoresistance of M/Cu/M(001) junctions (M=Fe, Co, or Ni): An ab initio study}",
	journal = "{JOURNAL OF APPLIED PHYSICS}",
	year = "{2004}",
	volume = "{96}",
	number = "{8}",
	pages = "{4352-4356}",
	month = "{OCT 15}",
	abstract = "{The electronic structure and magnetic properties of semi-infinite Cu (001)/M/Cu/M/semi-infinite Cu (001) multilayer systems with M=Fe, Co, or Ni have been studied by means of a first-principle Green's function technique based on the tight-binding linear muffin-tin orbital method. The results show that at the M/Cu (M=Fe or Co) interfaces there is a net charge transfer from iron and cobalt atoms to the neighboring paramagnetic copper atoms and an enhancement of the iron magnetic moment while at the Ni/Cu interface, the nickel magnetic moment is reduced compared with its bulk value. This behavior is explained in terms of the relative positions of the Fermi levels of the magnetic material and copper. The conductance is determined in the ballistic limit, in the current-perpendicular-to-the-plane geometry by means of transmission matrix formulation of Kubo-Landauer formalism. It is shown that the oscillations of the giant magnetoresistance ratio are mainly the result of the oscillations of the minority-spin conductance. (C) 2004 American Institute of Physics.}",
	publisher = "{AMER INST PHYSICS}",
	address = "{CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Vlaic, P (Reprint Author), CNRS, UMR 7504, Inst Phys \& Chim Mat Strasbourg, 23 Rue de Loess, F-67034 Strasbourg, France. CNRS, UMR 7504, Inst Phys \& Chim Mat Strasbourg, F-67034 Strasbourg, France. Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, S-57121 Uppsala, Sweden. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1063/1.1786376}",
	issn = "{0021-8979}",
	keywords-plus = "{METALLIC MULTILAYERS; SURFACES; FILMS; SPIN; INTERFACES; CU(001); FE}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Applied}",
	researcherid-numbers = "{Alouani, Mebarek/A-9101-2011 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Alouani, Mebarek/0000-0002-7985-5276 }",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. BAIBICH MN, 1988, PHYS REV LETT, V61, P2472, DOI 10.1103/PhysRevLett.61.2472. Barthelemy A., 1999, HDB MAGNETIC MAT, V12, P3. Bass J, 1999, J MAGN MAGN MATER, V200, P274, DOI 10.1016/S0304-8853(99)00316-9. BINASCH G, 1989, PHYS REV B, V39, P4828, DOI 10.1103/PhysRevB.39.4828. Blondel A, 1997, J MAGN MAGN MATER, V165, P34, DOI 10.1016/S0304-8853(96)00467-2. Butler WH, 1995, J MAGN MAGN MATER, V151, P354, DOI 10.1016/0304-8853(95)00507-2. DIENY B, 1991, PHYS REV B, V43, P1297, DOI 10.1103/PhysRevB.43.1297. FERNANDO GW, 1988, PHYS REV B, V38, P3016, DOI 10.1103/PhysRevB.38.3016. FU CL, 1987, PHYS REV B, V35, P925, DOI 10.1103/PhysRevB.35.925. Gijs MAM, 1997, ADV PHYS, V46, P285, DOI 10.1080/00018739700101518. Hjortstam O, 1996, PHYS REV B, V53, P9204, DOI 10.1103/PhysRevB.53.9204. HOMASSEN JT, 1992, SURF SCI, V264, P406. KRAFT T, 1994, PHYS REV B, V49, P11511, DOI 10.1103/PhysRevB.49.11511. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. LIST NJ, 1995, J MAGN MAGN MATER, V148, P342, DOI 10.1016/0304-8853(95)00264-2. Mathon J, 1997, PHYS REV B, V55, P14378, DOI 10.1103/PhysRevB.55.14378. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. TERSOFF J, 1982, PHYS REV B, V26, P6186, DOI 10.1103/PhysRevB.26.6186. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WUTTIG M, 1993, SURF SCI, V282, P237, DOI 10.1016/0039-6028(93)90929-E.}",
	number-of-cited-references = "{22}",
	times-cited = "{9}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{J. Appl. Phys.}",
	doc-delivery-number = "{859OM}",
	unique-id = "{ISI:000224277800048}"
}

S Khmelevskyi, I Turek and P Mohn. Spontaneous volume magnetostriction and non-Stoner behavior of the valence band in pure hcp Gd. PHYSICAL REVIEW B 70(13), Říjen 2004. BibTeX

@article{ ISI:000224855000009,
	author = "Khmelevskyi, S and Turek, I and Mohn, P",
	title = "{Spontaneous volume magnetostriction and non-Stoner behavior of the valence band in pure hcp Gd}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2004}",
	volume = "{70}",
	number = "{13}",
	month = "{OCT}",
	abstract = "{Employing the disordered local moment formalism in combination with first-principles band-structure calculations, we study the behavior of the valence band in pure hcp Gd upon disorder of the local 4f GD moments. We show that the large value of the spontaneous volume magnetostriction in Gd is entirely due to changes in the magnetic state of the valence band at T-c and can be calculated in good agreement with experiment. The local exchange splitting of the valence band persists above T-c, which is in strong disagreement with the conventional Stoner picture. The analysis of our results provides a theoretical background for the discussion of recent photoemission experiments.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Khmelevskyi, S (Reprint Author), Vienna Univ Technol, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Vienna Univ Technol, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Charles Univ Prague, Dept Elect Struct, Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.70.132401}",
	article-number = "{132401}",
	issn = "{1098-0121}",
	keywords-plus = "{ELECTRONIC-STRUCTURE; SURFACE-STATE; PHASE-TRANSITIONS; GD(0001) SURFACE; TEMPERATURE; GADOLINIUM; MAGNETISM; METALS; BULK}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 }",
	orcid-numbers = "{Khmelevskyi, Sergii/0000-0001-5630-7835}",
	cited-references = "{AHUJA R, 1994, PHYS REV B, V50, P5147, DOI 10.1103/PhysRevB.50.5147. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. ANDREEV AV, 1995, HDB MAGNETIC MAT, V8, pCH2. Bode M, 1998, APPL PHYS A-MATER, V66, pS121, DOI 10.1007/s003390051113. Coey JMD, 1999, NATURE, V401, P35, DOI 10.1038/43363. COLARIETITOSTI M, UNPUB. Dan'kov SY, 1998, PHYS REV B, V57, P3478, DOI 10.1103/PhysRevB.57.3478. Donath M, 1996, PHYS REV LETT, V77, P5138, DOI 10.1103/PhysRevLett.77.5138. ERIKSSON O, 1995, PHYS REV B, V52, P4420, DOI 10.1103/PhysRevB.52.4420. GONIS A, 1992, STUDIES MATH PHYS, V4. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. Jensen J., 1991, RARE EARTH MAGNETISM. Khmelevskyi S, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.140404. Khmelevskyi S, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.037201. Khmelevskyi S, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.220404. KIM B, 1992, PHYS REV LETT, V68, P1931, DOI 10.1103/PhysRevLett.68.1931. Kurz P, 2002, J PHYS-CONDENS MAT, V14, P6353, DOI 10.1088/0953-8984/14/25/305. LI DQ, 1992, PHYS REV B, V45, P7272, DOI 10.1103/PhysRevB.45.7272. Lindbaum A, 2002, HANDB MAG M, V14, P307, DOI 10.1016/S1567-2719(09)60008-1. Maiti K, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.167205. Maiti K, 2001, PHYS REV LETT, V86, P2846, DOI 10.1103/PhysRevLett.86.2846. NITZSCHE U, 2003, IN PRESS J MAGN MAGN. Rex S, 1999, J MAGN MAGN MATER, V192, P529, DOI 10.1016/S0304-8853(98)01054-3. SANDRATSKII LM, 1993, EUROPHYS LETT, V23, P661, DOI 10.1209/0295-5075/23/9/007. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Weschke E, 1996, PHYS REV LETT, V77, P3415, DOI 10.1103/PhysRevLett.77.3415. WILLIAMS AR, 1981, J APPL PHYS, V52, P2067, DOI 10.1063/1.329617. WU RQ, 1991, PHYS REV B, V44, P9400, DOI 10.1103/PhysRevB.44.9400.}",
	number-of-cited-references = "{30}",
	times-cited = "{21}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{867PR}",
	unique-id = "{ISI:000224855000009}"
}

L Bergqvist, O Eriksson, J Kudrnovsky, V Drchal, P Korzhavyi and I Turek. Magnetic percolation in diluted magnetic semiconductors. PHYSICAL REVIEW LETTERS 93(13), 2004. BibTeX

@article{ ISI:000224131400072,
	author = "Bergqvist, L and Eriksson, O and Kudrnovsky, J and Drchal, V and Korzhavyi, P and Turek, I",
	title = "{Magnetic percolation in diluted magnetic semiconductors}",
	journal = "{PHYSICAL REVIEW LETTERS}",
	year = "{2004}",
	volume = "{93}",
	number = "{13}",
	month = "{SEP 24}",
	abstract = "{We demonstrate that the magnetic properties of diluted magnetic semiconductors are dominated by short ranged interatomic exchange interactions that have a strong directional dependence. By combining first principles calculations of interatomic exchange interactions with a classical Heisenberg model and Monte Carlo simulations, we reproduce the observed critical temperatures of a broad range of diluted magnetic semiconductors. We also show that agreement between theory and experiment is obtained only when the magnetic atoms are randomly positioned. This suggests that the ordering of diluted magnetic semiconductors is heavily influenced by magnetic percolation, and that the measured critical temperatures should be very sensitive to details in the sample preparation, in agreement with observations.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Bergqvist, L (Reprint Author), Univ Uppsala, Dept Phys, Box 530, S-75121 Uppsala, Sweden. Univ Uppsala, Dept Phys, S-75121 Uppsala, Sweden. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Royal Inst Technol, Dept Mat Sci, SE-10044 Stockholm, Sweden. Acad Sci Czech Republ, Inst Phys, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevLett.93.137202}",
	article-number = "{137202}",
	issn = "{0031-9007}",
	keywords-plus = "{ROOM-TEMPERATURE; FERROMAGNETISM; GA1-XMNXAS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Eriksson, Olle/E-3265-2014 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 Bergqvist, Lars/J-5282-2014}",
	orcid-numbers = "{Eriksson, Olle/0000-0001-5111-1374 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417 Bergqvist, Lars/0000-0003-4341-5663}",
	cited-references = "{Alvarez G, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.277202. Bergqvist L, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.205201. BOSELLI MA, 2003, PHYS REV B, V68, P85319. Bouzerar G, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014410. Bouzerar G, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.081203. Cho SL, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.257203. DATTA S, 1990, APPL PHYS LETT, V56, P665, DOI 10.1063/1.102730. Dietl T, 2002, SEMICOND SCI TECH, V17, P377, DOI 10.1088/0268-1242/17/4/310. Edmonds KW, 2002, APPL PHYS LETT, V81, P3010, DOI 10.1063/1.1512822. Edmonds KW, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.037201. Edmonds KW, 2002, APPL PHYS LETT, V81, P4991, DOI 10.1063/1.1529079. Kaminski A, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.235210. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. Landau D. P., 2000, GUIDE MONTE CARLO SI. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Matsumoto Y, 2001, SCIENCE, V291, P854, DOI 10.1126/science.1056186. Ogale SB, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.077205. Ohno H, 1998, SCIENCE, V281, P951, DOI 10.1126/science.281.5379.951. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Prinz GA, 1998, SCIENCE, V282, P1660, DOI 10.1126/science.282.5394.1660. Reed ML, 2001, APPL PHYS LETT, V79, P3473, DOI 10.1063/1.1419231. Rosengaard NM, 1997, PHYS REV B, V55, P14975, DOI 10.1103/PhysRevB.55.14975. Saito H, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.207202. Sandratskii LM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.134435. Sato K, 2003, EUROPHYS LETT, V61, P403, DOI 10.1209/epl/i2003-00191-8. Sharma P, 2003, NAT MATER, V2, P673, DOI 10.1038/nmat984. Theodoropoulou N, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.107203. Timm C, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.137201. Zajaac M, 2001, APPL PHYS LETT, V79, P2432, DOI 10.1063/1.1406558. Zhao YJ, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.047204. ZHAO YJ, 2003, J PHYS CONDENS MATT, V15, pL585.}",
	number-of-cited-references = "{32}",
	times-cited = "{195}}, Usage-Count-(Last-180-days) = {{4}",
	usage-count-since-2013 = "{16}",
	journal-iso = "{Phys. Rev. Lett.}",
	doc-delivery-number = "{857PS}",
	unique-id = "{ISI:000224131400072}"
}

P Vlaic, N Baadji, M Alouani, H Dreysse, O Eriksson, O Bengone and I Turek. Calculated electronic and transport properties of Fe/GaAs/Fe(001) tunnel junctions. SURFACE SCIENCE 566(1):303-308, 2004. 22nd European Conference on Surface Science (ECOSS 22), Prague, CZECH REPUBLIC, SEP 07-12, 2003. BibTeX

@article{ ISI:000224238200054,
	author = "Vlaic, P and Baadji, N and Alouani, M and Dreysse, H and Eriksson, O and Bengone, O and Turek, I",
	title = "{Calculated electronic and transport properties of Fe/GaAs/Fe(001) tunnel junctions}",
	journal = "{SURFACE SCIENCE}",
	year = "{2004}",
	volume = "{566}",
	number = "{1}",
	pages = "{303-308}",
	month = "{SEP 20}",
	note = "{22nd European Conference on Surface Science (ECOSS 22), Prague, CZECH REPUBLIC, SEP 07-12, 2003}",
	organization = "{Inst Phys Acad Sci Czecg Republic; European Phys Soc, Surface Interface Div; Surf Div Int Union Vacuum Sci, Tech \& Applicat}",
	abstract = "{The electronic structure and magnetic properties of Fe/GaAs/Fe (0 0 1) tunnel junction have been studied using a first-principles Green's function technique, based on the tight-binding linear muffin-tin orbital method in its atomic spheres approximation, in conjunction with the coherent potential approximation to describe the disorder effects such as the interdiffusion at the interface. The results show that at the Fe/GaAs interface there is a charge transfer from iron to the semiconductor region and an enhancement of Fe magnetic moment. The magnetic properties are found to be sensitive to the interface terminations and influenced by the interdiffusion. The spin dependent transport properties are also discussed. (C) 2004 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Vlaic, P (Reprint Author), CNRS, UMR 7054, Inst Phys \& Chim Mat Strasbourg, 23 Rue Loess,BP 43, F-67034 Strasbourg 2, France. CNRS, UMR 7054, Inst Phys \& Chim Mat Strasbourg, F-67034 Strasbourg 2, France. Uppsala Univ, Phys Dept, Condensed Matter Theory Grp, S-57121 Uppsala, Sweden. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1016/j.susc.2004.06.125}",
	issn = "{0039-6028}",
	keywords = "{Green's function methods; tunneling; magnetic phenomena (cyclotron, resonance, phase transitions etc.); metal-semiconductor interfaces; electrical transport (conductivity, resistivity, mobility etc.)}",
	keywords-plus = "{LARGE MAGNETORESISTANCE; TEMPERATURE; MULTILAYERS; DENSITY}",
	research-areas = "{Chemistry; Physics}",
	web-of-science-categories = "{Chemistry, Physical; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Alouani, Mebarek/A-9101-2011 Eriksson, Olle/E-3265-2014 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Alouani, Mebarek/0000-0002-7985-5276 Eriksson, Olle/0000-0001-5111-1374 }",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. ANDERSEN OK, 1986, PHYS REV B, V34, P5253, DOI 10.1103/PhysRevB.34.5253. Bowen M, 2001, APPL PHYS LETT, V79, P1655, DOI 10.1063/1.1404125. BRINER B, 1994, PHYS REV LETT, V73, P340, DOI 10.1103/PhysRevLett.73.340. Butler WH, 1997, J APPL PHYS, V81, P5518, DOI 10.1063/1.364587. Butler WH, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.054416. Crisan V, 2002, J MAGN MAGN MATER, V240, P417, DOI 10.1016/S0304-8853(01)00878-2. DATTA S, 1990, APPL PHYS LETT, V56, P665, DOI 10.1063/1.102730. Freyss M, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014445. Freyss M, 2002, J MAGN MAGN MATER, V240, P117, DOI 10.1016/S0304-8853(01)00730-2. HEDIN L, 1965, PHYS REV, V139, pA796, DOI 10.1103/PhysRev.139.A796. INOMATA K, 1995, PHYS REV LETT, V74, P1863, DOI 10.1103/PhysRevLett.74.1863. Kikuchi H, 2000, J APPL PHYS, V87, P6055, DOI 10.1063/1.372610. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Lu Y, 1998, J APPL PHYS, V83, P6515, DOI 10.1063/1.367813. Mirbt S, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.155421. MONSMA DJ, 1995, PHYS REV LETT, V74, P5260, DOI 10.1103/PhysRevLett.74.5260. MOODERA JS, 1995, PHYS REV LETT, V74, P3273, DOI 10.1103/PhysRevLett.74.3273. Mosca DH, 2001, J MAGN MAGN MATER, V226, P917, DOI 10.1016/S0304-8853(00)01062-3. PRINZ GA, 1995, PHYS TODAY, V58. SKRIVER HL, 1992, PHYS REV B, V46, P7157, DOI 10.1103/PhysRevB.46.7157. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. TOSCANO S, 1992, J MAGN MAGN MATER, V114, pL9. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Xu YB, 1998, PHYS REV B, V58, P890, DOI 10.1103/PhysRevB.58.890.}",
	number-of-cited-references = "{26}",
	times-cited = "{7}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Surf. Sci.}",
	doc-delivery-number = "{859BX}",
	unique-id = "{ISI:000224238200054}"
}

O Bengone, O Eriksson, J Fransson, I Turek, J Kudrnovsky and V Drchal. Electronic structure and transport properties of CrAs/GaAs/CrAs trilayers from first principles theory. PHYSICAL REVIEW B 70(3), Červenec 2004. BibTeX

@article{ ISI:000222996700065,
	author = "Bengone, O and Eriksson, O and Fransson, J and Turek, I and Kudrnovsky, J and Drchal, V",
	title = "{Electronic structure and transport properties of CrAs/GaAs/CrAs trilayers from first principles theory}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2004}",
	volume = "{70}",
	number = "{3}",
	month = "{JUL}",
	abstract = "{We present a theoretical study of the transport properties of a CrAs/GaAs/CrAs trilayer. The theory was based on a first principles method for calculating the electronic structure, in combination with a Kubo-Landauer approach for calculating the transport properties in a current perpendicular to the plane geometry. We have also investigated the electronic structure and the magnetic properties of this trilayer, with special focus on electronic and magnetic properties at the CrAs/GaAs interface. Finally, we have studied the effects of chemical disorder on the transport properties, in particular the influence of As antisites at both the Cr and Ga sites.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Bengone, O (Reprint Author), Uppsala Univ, Dept Phys, Box 530, SE-75121 Uppsala, Sweden. Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden. Mid Sweden Univ, Dept Phys Elect Photon, Sundsvall, Sweden. Royal Inst Technol, Dept Mat Sci \& Engn, SE-10044 Stockholm, Sweden. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ Prague, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Vienna Univ Technol, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Max Planck Inst Mikrostrukturphys, D-06120 Halle An Der Saale, Germany.}",
	doi = "{10.1103/PhysRevB.70.035302}",
	article-number = "{035302}",
	issn = "{1098-0121}",
	keywords-plus = "{HALF-METALLIC FERROMAGNETISM; LAYERED MAGNETIC-STRUCTURES; GIANT MAGNETORESISTANCE; EXCHANGE; CRAS; MAGNETOTRANSPORT; MULTILAYERS; STABILITY; GROWTH}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Fransson, Jonas/A-9238-2009 Eriksson, Olle/E-3265-2014 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Eriksson, Olle/0000-0001-5111-1374 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Akinaga H, 2000, JPN J APPL PHYS 2, V39, pL1118, DOI 10.1143/JJAP.39.L1118. BAIBICH MN, 1988, PHYS REV LETT, V61, P2472, DOI 10.1103/PhysRevLett.61.2472. Bengone O, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.092406. BINASCH G, 1989, PHYS REV B, V39, P4828, DOI 10.1103/PhysRevB.39.4828. Bruno P, 1999, J MAGN MAGN MATER, V198-99, P46, DOI 10.1016/S0304-8853(98)00614-3. BRUNO P, 1991, PHYS REV LETT, V67, P1602, DOI 10.1103/PhysRevLett.67.1602. Butler WH, 1995, J MAGN MAGN MATER, V151, P354, DOI 10.1016/0304-8853(95)00507-2. DEGROOT RA, 1983, PHYS REV LETT, V50, P2024, DOI 10.1103/PhysRevLett.50.2024. Drchal V, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.214414. Etgens VH, 2001, J MAGN MAGN MATER, V226, P1577, DOI 10.1016/S0304-8853(01)00009-9. ETGENS VH, 2001, J MAGN MAGN MATER, V240, P64. Galanakis I, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.012406. Galanakis I, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.104417. GRUNBERG P, 1986, PHYS REV LETT, V57, P2442, DOI 10.1103/PhysRevLett.57.2442. Kubler J, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.220403. Kudrnovsky J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.115208. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. MATTHEISS LF, 1986, PHYS REV B, V34, P2190, DOI 10.1103/PhysRevB.34.2190. Mizuguchi M, 2002, J APPL PHYS, V91, P7917, DOI 10.1063/1.1455612. NEEDS RJ, 1986, PHYS REV B, V33, P3778, DOI 10.1103/PhysRevB.33.3778. NORDSTROM L, 1994, EUROPHYS LETT, V29, P395. Pampuch C, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.147203. PARKIN SSP, 1991, PHYS REV LETT, V66, P2152, DOI 10.1103/PhysRevLett.66.2152. PARMENTER RH, 1955, PHYS REV, V100, P573, DOI 10.1103/PhysRev.100.573. Pask JE, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.224420. Prinz GA, 1998, SCIENCE, V282, P1660, DOI 10.1126/science.282.5394.1660. Sakuma A, 2002, J PHYS SOC JPN, V71, P2534, DOI 10.1143/JPSJ.71.2534. Sanvito S, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.267202. Sanyal B, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.054417. SEIFERT K, 1995, J PHYS-CONDENS MAT, V7, P3683, DOI 10.1088/0953-8984/7/19/002. Shirai M, 2003, J APPL PHYS, V93, P6844, DOI 10.1063/1.1558604. Takahashi K, 2000, J APPL PHYS, V87, P6695, DOI 10.1063/1.372811. Turek I., 1997, ELECT STRUCTURE DISO. VALET T, 1993, PHYS REV B, V48, P7099, DOI 10.1103/PhysRevB.48.7099. VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063, DOI 10.1103/PhysRevLett.74.4063. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WEI SH, 1988, PHYS REV B, V37, P8958, DOI 10.1103/PhysRevB.37.8958. Xie WH, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.134407. Xie WH, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.037204. Xie WH, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.219901.}",
	number-of-cited-references = "{40}",
	times-cited = "{10}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{4}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{842II}",
	unique-id = "{ISI:000222996700065}"
}

V Drchal, J Kudrnovsky, I Turek, F Maca and P Weinberger. Phase stability and ordering in diluted magnetic III-V semiconductors. PHILOSOPHICAL MAGAZINE 84(18):1889-1905, 2004. BibTeX

@article{ ISI:000222030200006,
	author = "Drchal, V and Kudrnovsky, J and Turek, I and Maca, F and Weinberger, P",
	title = "{Phase stability and ordering in diluted magnetic III-V semiconductors}",
	journal = "{PHILOSOPHICAL MAGAZINE}",
	year = "{2004}",
	volume = "{84}",
	number = "{18}",
	pages = "{1889-1905}",
	month = "{JUN 21}",
	abstract = "{We study the energetics of diluted ferromagnetic III-V semiconductors on an ab initio level using the tight-binding linear muffin-tin orbital-coherent potential approximation method and treating magnetic disorder within the disordered local moment model. Based on calculated total energies, we examine the stability of these alloys with respect to segregation and estimate formation energies of antisite defects and substitutional and interstitial Mn atoms. By using the generalized perturbation method, we calculate the parameters of an effective alloy Ising Hamiltonian including long-range Coulomb interactions. We investigate possible types of ordering, that is correlations of spatial positions of defects using the linearized concentration wave method and Warren-Cowley short-range-order parameters. The theory is illustrated for a Ga1-xMnxAs alloy system.}",
	publisher = "{TAYLOR \& FRANCIS LTD}",
	address = "{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Drchal, V (Reprint Author), Acad Sci Czech Republic, Inst Phys, Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Vienna Univ Technol, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Charles Univ Prague, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic.}",
	doi = "{10.1080/14786430310001657364}",
	issn = "{1478-6443}",
	keywords-plus = "{ELECTRONIC-STRUCTURE; ALLOYS; GA1-XMNXAS; FERROMAGNETISM; MN; FE}",
	research-areas = "{Materials Science; Mechanics; Metallurgy \& Metallurgical Engineering; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mechanics; Metallurgy \& Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Maca, Frantisek/G-4467-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. Born M, 1954, DYNAMICAL THEORY CRY. Bose SK, 1997, PHYS REV B, V55, P8184, DOI 10.1103/PhysRevB.55.8184. Drchal V, 1996, PHYS REV B, V54, P8202, DOI 10.1103/PhysRevB.54.8202. Ducastelle F., 1991, ORDER PHASE STABILIT. EDMONDS KW, 2002, ARXIVCONDMAT0209554. Erwin SC, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.227201. GLOTZEL D, 1980, SOLID STATE COMMUN, V36, P403, DOI 10.1016/0038-1098(80)90920-5. Huang K., 1963, STAT MECH. Khachaturyan A. G., 1983, THEORY STRUCTURAL TR. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. KU KC, 2002, ARXIVCONDMAT0210426. KUDRNOVSKY J, 1989, PHYS REV B, V40, P10029, DOI 10.1103/PhysRevB.40.10029. Maca F, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.235209. Masek J, 2002, ACTA PHYS POL A, V102, P673. Masek J, 2001, ACTA PHYS POL A, V100, P319. Matsukura F., 1998, PHYS REV B, V57, P2037. MORUZZI VL, 1986, PHYS REV B, V34, P1784, DOI 10.1103/PhysRevB.34.1784. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. Ohno H, 1999, J APPL PHYS, V85, P4277, DOI 10.1063/1.370343. PINDOR AJ, 1983, J PHYS F MET PHYS, V13, P979, DOI 10.1088/0305-4608/13/5/012. Potashnik SJ, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.012408. Potashnik SJ, 2001, APPL PHYS LETT, V79, P1495, DOI 10.1063/1.1398619. Reed ML, 2001, MATER LETT, V51, P500, DOI 10.1016/S0167-577X(01)00342-1. Schliemann J, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.165201. SCHNEIDER J, 1987, PHYS REV LETT, V59, P240, DOI 10.1103/PhysRevLett.59.240. Schulthess TC, 2001, J APPL PHYS, V89, P7021, DOI 10.1063/1.1359456. Shioda R, 1998, PHYS REV B, V58, P1100, DOI 10.1103/PhysRevB.58.1100. SORENSEN BS, 2002, ARXIVCONDMAT0210480. TAGGART GB, 1979, PHYS REV B, V19, P3230, DOI 10.1103/PhysRevB.19.3230. TIMM C, 2002, ARXIVCONDMAT0201411. Turek I., 1997, ELECT STRUCTURE DISO. van Schilfgaarde M, 2001, PHYS REV B, V63. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Yu KM, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.201303.}",
	number-of-cited-references = "{36}",
	times-cited = "{5}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Philos. Mag.}",
	doc-delivery-number = "{829EY}",
	unique-id = "{ISI:000222030200006}"
}

J Masek, I Turek, J Kudrnovsky, F Maca and V Drchal. Compositional dependence of the formation energies of substitutional and interstitial Mn in partially compensated (Ga,Mn)As. ACTA PHYSICA POLONICA A 105(6):637-644, Červen 2004. 33rd International School of Semiconducting Compounds, Jaszowiec, POLAND, 2004. BibTeX

@article{ ISI:000223237900017,
	author = "Masek, J and Turek, I and Kudrnovsky, J and Maca, F and Drchal, V",
	title = "{Compositional dependence of the formation energies of substitutional and interstitial Mn in partially compensated (Ga,Mn)As}",
	journal = "{ACTA PHYSICA POLONICA A}",
	year = "{2004}",
	volume = "{105}",
	number = "{6}",
	pages = "{637-644}",
	month = "{JUN}",
	note = "{33rd International School of Semiconducting Compounds, Jaszowiec, POLAND, 2004}",
	abstract = "{We use the density-functional theory to calculate the total energy of mixed crystals (Ga,Mn)As with a small concentration of various donors. We find that the formation energy of Mn depends strongly on the partial concentrations of Mn in the substitutional and interstitial positions, and on the concentration of other dopants. The composition dependence of the formation energies represents an effective feedback mechanism, resulting in the self-compensation property of (Ga,Mn)As. We show that the partial concentrations of both substitutional and interstitial Mn increase proportionally to the total concentration of Mn.}",
	publisher = "{POLISH ACAD SCIENCES INST PHYSICS}",
	address = "{AL LOTNIKOW 32-46, 02-668 WARSAW, POLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Masek, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Na Slovance 2, Prague 18221 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, Prague 18221 8, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, Brno 61662, Czech Republic. Charles Univ, Fac Math \& Phys, CR-12116 Prague, Czech Republic.}",
	issn = "{0587-4246}",
	keywords-plus = "{DILUTED MAGNETIC SEMICONDUCTORS; CARRIER-INDUCED FERROMAGNETISM}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Maca, Frantisek/G-4467-2014 Turek, Ilja/G-5553-2014 Masek, Jan/G-5813-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Beschoten B, 1999, PHYS REV LETT, V83, P3073, DOI 10.1103/PhysRevLett.83.3073. Blinowski J, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.121204. Dietl T, 2000, SCIENCE, V287, P1019, DOI 10.1126/science.287.5455.1019. Dietl T, 1997, PHYS REV B, V55, pR3347. Erwin SC, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.227201. Maca F, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.235209. Mahadevan P, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.075202. Masek J, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.165212. Masek J, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.153203. Masek J, 2002, ACTA PHYS POL A, V102, P673. Masek J, 2001, ACTA PHYS POL A, V100, P319. Ohno H, 2003, J CRYST GROWTH, V251, P285, DOI 10.1016/S0022-0248(02)02290-X. Sanvito S, 2002, J SUPERCOND, V15, P85, DOI 10.1023/A:1014083312066. Turek I., 1997, ELECT STRUCTURE DISO. Yu KM, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.201303. YU KM, 2003, PHYS REV B, V68.}",
	number-of-cited-references = "{16}",
	times-cited = "{9}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Acta Phys. Pol. A}",
	doc-delivery-number = "{845JF}",
	unique-id = "{ISI:000223237900017}"
}

P Mohn, I Turek and S Khmelevskyi. Effects of alloying on electronic structure and magnetism of Y(Co1-xMx)(2) (M = Al, Si, Fe, Cu) compounds. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 272(1, SI):312-314, Květen 2004. International Conference on Magnetism (ICM 2004), Rome, ITALY, JUL 27-AUG 01, 2003. BibTeX

@article{ ISI:000222236500138,
	author = "Mohn, P and Turek, I and Khmelevskyi, S",
	title = "{Effects of alloying on electronic structure and magnetism of Y(Co1-xMx)(2) (M = Al, Si, Fe, Cu) compounds}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2004}",
	volume = "{272}",
	number = "{1, SI}",
	pages = "{312-314}",
	month = "{MAY}",
	note = "{International Conference on Magnetism (ICM 2004), Rome, ITALY, JUL 27-AUG 01, 2003}",
	abstract = "{The effects of various substitutions on the electronic structure Of CO in Y(CO1-xMx)(2) compounds (M - Al, Si, Fe, Cu) are studied employing the coherent potential approximation as embodied in an all-electron TB-LMTO method. Two principal mechanisms affect the magnetic properties of Co as the impurity concentration increases: (i) a change of the 3d-electron concentration; (ii) effects of band smoothening due to disorder. The latter mechanism is dominant for At and Si substitutions. Substituting 3d-element the former applies, but also disorder effects are present. (C) 2003 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Mohn, P (Reprint Author), Vienna Tech Univ, Ctr Computat Mat Sci, Getreidemarkt 9-134, A-1060 Vienna, Austria. Vienna Tech Univ, Ctr Computat Mat Sci, A-1060 Vienna, Austria.}",
	doi = "{10.1016/j.jmmm.2003.11.111}",
	issn = "{0304-8853}",
	keywords = "{Laves phase; disorder; metamagnetism}",
	keywords-plus = "{HIGH-FIELD MAGNETIZATION; LAVES PHASES; Y(CO1-XALX)2; SYSTEM}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{ALEXANDRYAN VV, 1985, SOV PHYS JETP, V62, P153. Cuong TD, 1998, J MAGN MAGN MATER, V182, P143, DOI 10.1016/S0304-8853(97)01015-9. DUC NH, 1993, J MAGN MAGN MATER, V125, P323, DOI 10.1016/0304-8853(93)90106-C. Duc N H, 1999, HDB MAGNETIC MAT, V12. GOTO T, 1989, SOLID STATE COMMUN, V72, P945, DOI 10.1016/0038-1098(89)90433-X. Gratz E, 2001, J PHYS-CONDENS MAT, V13, pR385, DOI 10.1088/0953-8984/13/23/202. Khmelevskyi S, 2002, J PHYS-CONDENS MAT, V14, P13799, DOI 10.1088/0953-8984/14/50/307. Khmelevskyi S, 2001, J PHYS-CONDENS MAT, V13, P8405, DOI 10.1088/0953-8984/13/36/313. MITAMURA H, 1995, J MAGN MAGN MATER, V140, P821, DOI 10.1016/0304-8853(94)00683-0. SAKAKIBARA T, 1987, J MAGN MAGN MATER, V70, P126, DOI 10.1016/0304-8853(87)90378-7. STEINER W, 1979, J MAGN MAGN MATER, V14, P47, DOI 10.1016/0304-8853(79)90202-6. Turek I., 1997, ELECT STRUCTURE DISO. YAMADA H, 1988, PHYSICA B \& C, V149, P390, DOI 10.1016/0378-4363(88)90270-7. YOSHIMURA K, 1985, SOLID STATE COMMUN, V56, P767, DOI 10.1016/0038-1098(85)90305-9.}",
	number-of-cited-references = "{14}",
	times-cited = "{6}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{831ZR}",
	unique-id = "{ISI:000222236500138}"
}

I Turek, J Kudrnovsky, V Drchal and P Weinberger. Residual resistivity of (Ga,Mn)As alloys from ab initio calculations. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 272(3, SI):1987-1988, Květen 2004. International Conference on Magnetism (ICM 2003), Rome, ITALY, JUL 27-AUG 01, 2003. BibTeX

@article{ ISI:000222236800149,
	author = "Turek, I and Kudrnovsky, J and Drchal, V and Weinberger, P",
	title = "{Residual resistivity of (Ga,Mn)As alloys from ab initio calculations}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2004}",
	volume = "{272}",
	number = "{3, SI}",
	pages = "{1987-1988}",
	month = "{MAY}",
	note = "{International Conference on Magnetism (ICM 2003), Rome, ITALY, JUL 27-AUG 01, 2003}",
	abstract = "{The residual resistivity of diluted (Ga,Mn)As magnetic semiconductors with native compensating defects (As-antisites, Mn-interstitials) is calculated from first principles using the Kubo-Greenwood linear response theory. The concentration variations of the resistivity reflect the strength of impurity scattering and the number of carriers. In agreement with a recent experiment, the calculated resistivities are strongly correlated with the alloy Curie temperatures evaluated in terms of a classical Heisenberg Hamiltonian. (C) 2003 Elsevier B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Inst Phys \& Mat AS CR, Zizkova 22, Brno 61662, Czech Republic. Inst Phys \& Mat AS CR, Brno 61662, Czech Republic. Charles Univ, Dept Elect Struct, Prague 12116 2, Czech Republic. Vienna Tech Univ, CMS, A-1060 Vienna, Austria. Inst Phys AS CR, Prague 18221 8, Czech Republic.}",
	doi = "{10.1016/j.jmmm.2003.12.455}",
	issn = "{0304-8853}",
	keywords = "{residual resistivity; magnetic semiconductors; Curie temperature}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. Edmonds KW, 2002, APPL PHYS LETT, V81, P4991, DOI 10.1063/1.1529079. Jungwirth T, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.207208. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. Maca F, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.235209. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Turek I, 2003, PHYS STATUS SOLIDI B, V236, P318, DOI 10.1002/pssb.200301671. Turek I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.125101. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{10}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{831ZU}",
	unique-id = "{ISI:000222236800149}"
}

J Kudrnovsky, I Turek, V Drchal and P Bruno. Curie temperatures and exchange interactions in diluted group-IV magnetic semiconductors. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 272(3, SI):1995-1996, Květen 2004. International Conference on Magnetism (ICM 2003), Rome, ITALY, JUL 27-AUG 01, 2003. BibTeX

@article{ ISI:000222236800153,
	author = "Kudrnovsky, J and Turek, I and Drchal, V and Bruno, P",
	title = "{Curie temperatures and exchange interactions in diluted group-IV magnetic semiconductors}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2004}",
	volume = "{272}",
	number = "{3, SI}",
	pages = "{1995-1996}",
	month = "{MAY}",
	note = "{International Conference on Magnetism (ICM 2003), Rome, ITALY, JUL 27-AUG 01, 2003}",
	abstract = "{Effective exchange interactions between magnetic atoms in GeMnCr alloys are obtained from the first principles by mapping total energies associated with rotations of magnetic moments onto the effective classical Heisenberg Hamiltonian. The calculated Curie temperature increases with Mn concentration but decreases linearly with increasing Cr content in a good agreement with a recent experiment. (C) 2003 Published by Elsevier B.V.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Inst Phys AS CR, Slovance 2, CZ-18221 Prague, Czech Republic. Inst Phys AS CR, CZ-18221 Prague, Czech Republic. Inst Phys Mat AS CR, CZ-61662 Brno, Czech Republic. Charles Univ, Dept Elect Struct, CZ-12116 Prague, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle Saale, Germany.}",
	doi = "{10.1016/j.jmmm.2003.12.789}",
	issn = "{0304-8853}",
	keywords = "{magnetic semiconductors; Curie temperature; exchange interactions; first principles}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. DEGENNES PG, 1962, J PHYS-PARIS, V23, P630, DOI 10.1051/jphysrad:019620023010063000. JONKER BT, CONDMAT0302231. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Park YD, 2002, SCIENCE, V295, P651, DOI 10.1126/science.1066348. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{7}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{831ZU}",
	unique-id = "{ISI:000222236800153}"
}

O Bengone, O Eriksson, S Mirbt, I Turek, J Kudrnovsky and V Drchal. Origin of the negative giant magnetoresistance effect in Co1-xCrx/Cu/Co (111) trilayers. PHYSICAL REVIEW B 69(9), Březen 2004. BibTeX

@article{ ISI:000220812800017,
	author = "Bengone, O and Eriksson, O and Mirbt, S and Turek, I and Kudrnovsky, J and Drchal, V",
	title = "{Origin of the negative giant magnetoresistance effect in Co1-xCrx/Cu/Co (111) trilayers}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2004}",
	volume = "{69}",
	number = "{9}",
	month = "{MAR}",
	abstract = "{We present a theoretical study on Co1-xCrx/Cu/Co (111) trilayers, where a transition from positive to negative giant magnetoresistance effect has been observed experimentally, with increasing thickness of the alloyed layer. The theory, based on a recently implemented conductance calculation, reproduces quantitatively this observation, and the effect is found to be caused by alloying effects, due to a virtual bound Cr d state in the majority spin channel of the Co-Cr layer.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Bengone, O (Reprint Author), Uppsala Univ, Dept Phys, Box 530, SE-75121 Uppsala, Sweden. Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden. ITM Mid Sweden Univ, Dept Phys Elect Photon, S-85170 Sundsvall, Sweden. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic.}",
	doi = "{10.1103/PhysRevB.69.092406}",
	article-number = "{092406}",
	issn = "{1098-0121}",
	keywords-plus = "{LAYERED MAGNETIC-STRUCTURES; MULTILAYERS; EXCHANGE; GMR; CR; SUPERLATTICES}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Eriksson, Olle/E-3265-2014 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Eriksson, Olle/0000-0001-5111-1374 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{BAIBICH MN, 1988, PHYS REV LETT, V61, P2472, DOI 10.1103/PhysRevLett.61.2472. BINASCH G, 1989, PHYS REV B, V39, P4828, DOI 10.1103/PhysRevB.39.4828. Binder J, 1997, J MAGN MAGN MATER, V165, P100, DOI 10.1016/S0304-8853(96)00509-4. Bruno P, 1999, J MAGN MAGN MATER, V198-99, P46, DOI 10.1016/S0304-8853(98)00614-3. BRUNO P, 1991, PHYS REV LETT, V67, P1602, DOI 10.1103/PhysRevLett.67.1602. Butler WH, 1995, J MAGN MAGN MATER, V151, P354, DOI 10.1016/0304-8853(95)00507-2. Drchal V, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.214414. Friedel J., 1958, Supplemento al Nuovo Cimento, V7, P287, DOI 10.1007/BF02751483. GEORGE JM, 1994, PHYS REV LETT, V72, P408, DOI 10.1103/PhysRevLett.72.408. GRUNBERG P, 1986, PHYS REV LETT, V57, P2442, DOI 10.1103/PhysRevLett.57.2442. HEINE V, 1983, J PHYS F MET PHYS, V13, P2155, DOI 10.1088/0305-4608/13/10/025. Hsu SY, 1997, PHYS REV LETT, V78, P2652, DOI 10.1103/PhysRevLett.78.2652. Isberg P, 1997, VACUUM, V48, P483, DOI 10.1016/S0042-207X(97)00003-1. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Marrows CH, 1999, APPL PHYS LETT, V75, P3847, DOI 10.1063/1.125476. Milano J, 2001, J MAGN MAGN MATER, V226, P1755, DOI 10.1016/S0304-8853(00)00886-6. Moser A, 1998, J MAGN MAGN MATER, V183, P272, DOI 10.1016/S0304-8853(97)01090-1. NORDSTROM L, 1994, EUROPHYS LETT, V29, P385. PARKIN SSP, 1991, PHYS REV LETT, V66, P2152, DOI 10.1103/PhysRevLett.66.2152. Prinz GA, 1998, SCIENCE, V282, P1660, DOI 10.1126/science.282.5394.1660. Renard JP, 1996, J APPL PHYS, V79, P5270, DOI 10.1063/1.361350. Turek I., 1997, ELECT STRUCTURE DISO. VALET T, 1993, PHYS REV B, V48, P7099, DOI 10.1103/PhysRevB.48.7099. VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063, DOI 10.1103/PhysRevLett.74.4063. Vouille C, 1997, J APPL PHYS, V81, P4573, DOI 10.1063/1.365432. Vouille C, 1999, PHYS REV B, V60, P6710, DOI 10.1103/PhysRevB.60.6710.}",
	number-of-cited-references = "{26}",
	times-cited = "{11}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{812AQ}",
	unique-id = "{ISI:000220812800017}"
}

J Kudrnovsky, I Turek, V Drchal, F Maca, P Weinberger and P Bruno. Exchange interactions in III-V and group-IV diluted magnetic semiconductors. PHYSICAL REVIEW B 69(11), Březen 2004. BibTeX

@article{ ISI:000220814000066,
	author = "Kudrnovsky, J and Turek, I and Drchal, V and Maca, F and Weinberger, P and Bruno, P",
	title = "{Exchange interactions in III-V and group-IV diluted magnetic semiconductors}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2004}",
	volume = "{69}",
	number = "{11}",
	month = "{MAR}",
	abstract = "{Effective pair exchange interactions between Mn atoms in III-V and group-IV diluted magnetic semiconductors are determined from a two-step first-principles procedure. In the first step, the self-consistent electronic structure of a system is calculated for a collinear spin structure at zero temperature with the substitutional disorder treated within the framework of the coherent-potential approximation. The effective exchange pair interactions are then obtained in a second step by mapping the total energies associated with rotations of magnetic moments onto an effective classical Heisenberg Hamiltonian using the magnetic force theorem and one-electron Green functions. The formalism is applied to Ga1-xMnxAs alloys with and without As antisites, and to Ge1-xMnx alloys recently studied experimentally. A detailed study of the behavior of pair exchange interactions as a function of the distance between magnetic atoms as well as a function of the concentrations of the magnetic atoms and compensating defects is presented. We have found that due to disorder and the half-metallic character of the system the pair exchange interactions are exponentially damped with increasing distance between the Mn atoms. The exchange interactions between Mn atoms are ferromagnetic for distances larger than the ones corresponding to the averaged nearest-neighbor Mn-Mn distance. The pair exchange interactions are also reduced with increasing concentrations of the Mn atoms and As antisites. As a simple application of the calculated exchange interactions we present mean-field estimates of Curie temperatures.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic. Tech Univ Vienna, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Max Planck Inst Mikrostrukturphys, D-06120 Halle Saale, Germany.}",
	doi = "{10.1103/PhysRevB.69.115208}",
	article-number = "{115208}",
	issn = "{1098-0121}",
	keywords-plus = "{AB-INITIO THEORY; CURIE TEMPERATURES; ALLOYS; FERROMAGNETS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Maca, Frantisek/G-4467-2014 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. BLACKMAN JA, 1969, J PHYS PART C SOLID, V2, P1670, DOI 10.1088/0022-3719/2/9/317. Bouzerar G, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.081203. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. Cho SG, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.033303. DEGENNES PG, 1962, J PHYS-PARIS, V23, P630, DOI 10.1051/jphysrad:019620023010063000. Dietl T, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.195205. Jain M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.245205. Kittel C., 1987, QUANTUM THEORY SOLID. Konig J, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.184423. KONIG K, 2003, ELECT STRUCTURE MAGN. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. Kudrnovsky J, 2003, J SUPERCOND, V16, P119, DOI 10.1023/A:1023257306608. Kudrnovsky J, 2000, LECT NOTES PHYS, V535, P313. Kulatov E, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.045203. Levy PM, 1998, PHYS REV B, V58, P5588, DOI 10.1103/PhysRevB.58.5588. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Maca F, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.235209. Masek J, 2002, ACTA PHYS POL A, V102, P673. Matsukura F., 1998, PHYS REV B, V57, P2037. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. Park JH, 2000, PHYSICA B, V281, P703, DOI 10.1016/S0921-4526(99)00984-9. Park YD, 2002, SCIENCE, V295, P651, DOI 10.1126/science.1066348. Sandratskii LM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.134435. Sanvito S, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.165206. Sato K, 2003, EUROPHYS LETT, V61, P403, DOI 10.1209/epl/i2003-00191-8. Sato K, 2001, JPN J APPL PHYS 2, V40, pL651, DOI 10.1143/JJAP.40.L651. Schulthess TC, 2001, J APPL PHYS, V89, P7021, DOI 10.1063/1.1359456. Turek I, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.224431. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. van Schilfgaarde M, 2001, PHYS REV B, V63. VOSKO SH, 1980, CAN J PHYS, V58, P1200.}",
	number-of-cited-references = "{37}",
	times-cited = "{142}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{18}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{812BC}",
	unique-id = "{ISI:000220814000066}"
}

K Carva and I Turek. Ab initio electronic structure calculations of metal-vacuum-metal junctions in nonequilibrium situations. CZECHOSLOVAK JOURNAL OF PHYSICS 54(1, D):D257-D260, 2004. 12th Czech and Slovak Conference on Magnetism, Kosice, SLOVAKIA, JUL 12-15, 2004. BibTeX

@article{ ISI:000227062000057,
	author = "Carva, K and Turek, I",
	title = "{Ab initio electronic structure calculations of metal-vacuum-metal junctions in nonequilibrium situations}",
	journal = "{CZECHOSLOVAK JOURNAL OF PHYSICS}",
	year = "{2004}",
	volume = "{54}",
	number = "{1, D}",
	pages = "{D257-D260}",
	note = "{12th Czech and Slovak Conference on Magnetism, Kosice, SLOVAKIA, JUL 12-15, 2004}",
	organization = "{PJ Safarik Univ; Slovak Acad Sci, Inst Expt Phys, Fac Sci}",
	abstract = "{Electronic structures of bielectrode junctions under external bias voltages were recently solved numerically on an ab initio basis using nonequilibrium Green-function methods in combination with the density-functional theory. Here we examine this technique by applying it to two electrodes within a jellium model separated by a vacuum layer. We investigate the charge distribution, the shape of the tunnel barrier and the current. Our results suggest that this method is valid only in a limited range of external bias voltages.}",
	publisher = "{INST PHYSICS ACAD SCI CZECH REPUBLIC}",
	address = "{NA SLOVANCE 2, PRAGUE 182 21, CZECH REPUBLIC}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Carva, K (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Elect Struct, Ke Karlovu 5, Prague 12116 2, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Dept Elect Struct, Prague 12116 2, Czech Republic.}",
	issn = "{0011-4626}",
	keywords = "{tunneling junctions; nonequilibrium systems; Green-function methods}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 }",
	cited-references = "{Bode M, 1999, J VAC SCI TECHNOL A, V17, P2228, DOI 10.1116/1.581752. Burke K, 1998, LECT NOTES PHYS, V500, P116. CARVA K, 2003, THESIS CHARLES U PRA. Datta S., 1995, ELECT TRANSPORT MESO. Haug H., 1996, QUANTUM KINETICS TRA. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. LANG ND, 1992, PHYS REV B, V45, P13599, DOI 10.1103/PhysRevB.45.13599. MCCANN A, 1988, SURF SCI, V194, P44, DOI 10.1016/0039-6028(94)91243-2. Taylor J, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.245407.}",
	number-of-cited-references = "{9}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Czech. J. Phys.}",
	doc-delivery-number = "{898FO}",
	unique-id = "{ISI:000227062000057}"
}

O Schneeweiss, I Turek, E Santava, J Vejpravova and V Sechovsky. Magnetic phase transition in HOCO2 alloy studied by emission Mossbauer spectroscopy. CZECHOSLOVAK JOURNAL OF PHYSICS 54(1, D):D299-D302, 2004. 12th Czech and Slovak Conference on Magnetism, Kosice, SLOVAKIA, JUL 12-15, 2004. BibTeX

@article{ ISI:000227062000066,
	author = "Schneeweiss, O and Turek, I and Santava, E and Vejpravova, J and Sechovsky, V",
	title = "{Magnetic phase transition in HOCO2 alloy studied by emission Mossbauer spectroscopy}",
	journal = "{CZECHOSLOVAK JOURNAL OF PHYSICS}",
	year = "{2004}",
	volume = "{54}",
	number = "{1, D}",
	pages = "{D299-D302}",
	note = "{12th Czech and Slovak Conference on Magnetism, Kosice, SLOVAKIA, JUL 12-15, 2004}",
	organization = "{PJ Safarik Univ; Slovak Acad Sci, Inst Expt Phys, Fac Sci}",
	abstract = "{The emission Fe-57 Mossbauer spectra of HOCo2 were measured in temperature range 20 - 300 K. The mean hyperfine induction derived from the spectra exhibits a new anomaly increase above the Tc of HOCo2 with a maximum at 90 K. It can be interpreted as an ordering of the Co moments which is stable at least during the reading time of the Mossbauer effect on Fe-57 which is similar to 10(-7) s.}",
	publisher = "{INST PHYSICS ACAD SCI CZECH REPUBLIC}",
	address = "{NA SLOVANCE 2, PRAGUE 182 21, CZECH REPUBLIC}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Schneeweiss, O (Reprint Author), Acad Sci Czech Republ, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague, Czech Republic. Charles Univ, Fac Math \& Phys, Dept Elect Struct, Prague 12116 2, Czech Republic.}",
	doi = "{10.1007/s10582-004-0086-3}",
	issn = "{0011-4626}",
	keywords = "{Mossbauer spectroscopy; magnetic transition}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Schneeweiss, Oldrich/F-7841-2014 Vejpravova, Jana/G-1895-2014 Turek, Ilja/G-5553-2014 Sechovsky, Vladimir/A-5256-2008}",
	orcid-numbers = "{Vejpravova, Jana/0000-0002-6308-9992 Sechovsky, Vladimir/0000-0003-1298-2120}",
	cited-references = "{Bland J, 2002, PHYS STATUS SOLIDI A, V189, P919, DOI 10.1002/1521-396X(200202)189:3<919::AID-PSSA919>3.0.CO;2-S. Wohlfarth E P, 1980, FERROMAGNETIC MATERI, P297. COHEN RL, 1976, APPL MOSSBAUER SPECT, V1, P15. Cuong TD, 1999, ACTA PHYS SLOVACA, V49, P457. Cuong TD, 1997, J ALLOY COMPD, V262, P141, DOI 10.1016/S0925-8388(97)00450-7. Duc NH, 1997, J PHYS-CONDENS MAT, V9, P1585, DOI 10.1088/0953-8984/9/7/020. LEE EW, 1976, PHYS STATUS SOLIDI A, V33, P483, DOI 10.1002/pssa.2210330206. STEINER W, 1978, J PHYS F MET PHYS, V8, P1525, DOI 10.1088/0305-4608/8/7/025.}",
	number-of-cited-references = "{8}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{Czech. J. Phys.}",
	doc-delivery-number = "{898FO}",
	unique-id = "{ISI:000227062000066}"
}

I Turek, J Rusz and M Divis. Theory of spontaneous volume magnetostriction in rare-earth-based systems. CZECHOSLOVAK JOURNAL OF PHYSICS 54(1, D):D279-D282, 2004. 12th Czech and Slovak Conference on Magnetism, Kosice, SLOVAKIA, JUL 12-15, 2004. BibTeX

@article{ ISI:000227062000061,
	author = "Turek, I and Rusz, J and Divis, M",
	title = "{Theory of spontaneous volume magnetostriction in rare-earth-based systems}",
	journal = "{CZECHOSLOVAK JOURNAL OF PHYSICS}",
	year = "{2004}",
	volume = "{54}",
	number = "{1, D}",
	pages = "{D279-D282}",
	note = "{12th Czech and Slovak Conference on Magnetism, Kosice, SLOVAKIA, JUL 12-15, 2004}",
	organization = "{PJ Safarik Univ; Slovak Acad Sci, Inst Expt Phys, Fac Sci}",
	abstract = "{We developed an ab initio theory of zero-temperature volume magnetostriction that is based on selfconsistent electronic-structure calculations for a magnetically ordered ground state and a disordered local moment state. The theory is applied to hexagonal gadolinium and to selected intermetallic compounds with the cubic C15 Laves structure: RCO2 (R = Gd, Dy, Er) and GdAl2. The results are compared with experiment and discussed in terms of magnitudes of the local moments and of volume-dependent exchange interactions.}",
	publisher = "{INST PHYSICS ACAD SCI CZECH REPUBLIC}",
	address = "{NA SLOVANCE 2, PRAGUE 182 21, CZECH REPUBLIC}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Charles Univ, Dept Elect Struct, Fac Math \& Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1007/s10582-004-0081-8}",
	issn = "{0011-4626}",
	keywords = "{volume magnetostriction; rare earths; intermetallic compounds}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Rusz, Jan/A-3324-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Rusz, Jan/0000-0002-0074-1349 }",
	cited-references = "{Duc NH, 1999, HANDB MAG M, V12, P259, DOI 10.1016/S1567-2719(99)12007-9. Khmelevskyi S, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.037201. Lindbaum A, 2002, HANDB MAG M, V14, P307, DOI 10.1016/S1567-2719(09)60008-1. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I., 1997, ELECT STRUCTURE DISO. WASSERMAN EF, 1990, FERROMAGNETIC MATERI, V5, P237.}",
	number-of-cited-references = "{6}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Czech. J. Phys.}",
	doc-delivery-number = "{898FO}",
	unique-id = "{ISI:000227062000061}"
}

K Carva and I Turek. Tunneling junctions under finite bias voltages: Ab initio calculations of electron densities and currents. In M Ghafari, T Enz and H Hahn (eds.). SECOND SEEHEIM CONFERENCE ON MAGNETISM, PROCEEDINGS. 2004, 3369-3372. 2nd Seeheim Conference on Magnetism (SCM2004), Seeheim, GERMANY, JUN 27-JUL 01, 2004. BibTeX

@inproceedings{ ISI:000227060600030,
	author = "Carva, K and Turek, I",
	editor = "{Ghafari, M and Enz, T and Hahn, H}",
	title = "{Tunneling junctions under finite bias voltages: Ab initio calculations of electron densities and currents}",
	booktitle = "{SECOND SEEHEIM CONFERENCE ON MAGNETISM, PROCEEDINGS}",
	year = "{2004}",
	pages = "{3369-3372}",
	note = "{2nd Seeheim Conference on Magnetism (SCM2004), Seeheim, GERMANY, JUN 27-JUL 01, 2004}",
	organization = "{Deutsch Forsch Gemeinsch; Forsch Zentrum Karlsruhe; Darmstadt Univ Technol}",
	abstract = "{Electronic structures of bielectrode junctions under external bias voltages were recently solved numerically on an ab initio basis using nonequilibrium Green's function methods in combination with the density functional theory. Here we examine this technique by applying it to two electrodes within a jellium model separated by a vacuum layer. We investigate the charge distribution, the shape of the tunnel barrier and the current. Our results suggest, that this method is valid only in a limited range of external bias voltages. (C) 2004 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim.}",
	publisher = "{WILEY-V C H VERLAG GMBH}",
	address = "{PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Carva, K (Reprint Author), Charles Univ Prague, Fac Math \& Phys, Dept Elect Struct, Ke Karlovu 5, Prague 12116 2, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Dept Elect Struct, Prague 12116 2, Czech Republic.}",
	doi = "{10.1002/pssc.200405555}",
	isbn = "{3-527-40577-1}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Carva, Karel/A-3703-2008 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Carva, Karel/0000-0002-2275-1986 }",
	cited-references = "{Bode M, 1999, J VAC SCI TECHNOL A, V17, P2228, DOI 10.1116/1.581752. Burke K, 1998, LECT NOTES PHYS, V500, P116. CARVA K, 2003, THESIS CHARLES U PRA. Datta S., 1995, ELECT TRANSPORT MESO. Haug H., 1996, QUANTUM KINETICS TRA. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. LANG ND, 1992, PHYS REV B, V45, P13599, DOI 10.1103/PhysRevB.45.13599. MCCANN A, 1988, SURF SCI, V194, P44, DOI 10.1016/0039-6028(94)91243-2. Taylor J, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.245407.}",
	number-of-cited-references = "{9}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{BBQ38}",
	unique-id = "{ISI:000227060600030}"
}

I Turek, J Kudrnovsky, M Divis, P Franek, G Bihlmayer and S Blugel. First-principles study of the electronic structure and exchange interactions in bcc europium. PHYSICAL REVIEW B 68(22), Prosinec 2003. BibTeX

@article{ ISI:000188081900076,
	author = "Turek, I and Kudrnovsky, J and Divis, M and Franek, P and Bihlmayer, G and Blugel, S",
	title = "{First-principles study of the electronic structure and exchange interactions in bcc europium}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2003}",
	volume = "{68}",
	number = "{22}",
	month = "{DEC}",
	abstract = "{Magnetic properties of the europium metal in a bcc structure are studied from first principles using a two-step approach. First, the electronic structure of a ferromagnetic state is calculated in the local spin-density approximation (LSDA) to the density-functional theory whereby the highly localized 4f orbitals are treated as part of the atomic core. This description leads to an equilibrium lattice constant that compares well with experiment, in contrast to the standard LSDA which yields a significantly smaller atomic volume. In the second step, parameters of an effective Heisenberg Hamiltonian are derived from the self-consistent electronic structure and they are used to determine the magnetic ground state and to estimate the magnetic transition temperature. The calculated pairwise exchange interactions tend to couple the local magnetic moments of the nearest neighbors ferromagnetically. However, the interaction parameters exhibit a slow oscillatory decay as a function of the interatomic distance which makes them fully compatible with an observed spin-spiral ground state. The resulting wave vector of the spiral as well as the Neel temperature are in fair agreement with measured values.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ Prague, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Univ Osnabruck, Fachbereich Phys, D-49069 Osnabruck, Germany.}",
	doi = "{10.1103/PhysRevB.68.224431}",
	article-number = "{224431}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{DENSITY-FUNCTIONAL-APPROACH; RARE-EARTHS; MAGNETIC-INTERACTIONS; BULK; GD; GADOLINIUM; ACCURATE; SURFACE; METALS; ENERGY}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bihlmayer, Gustav/G-5279-2013 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Franek, Peter/F-1628-2013}",
	orcid-numbers = "{Bihlmayer, Gustav/0000-0002-6615-1122 KUDRNOVSKY, Josef/0000-0002-9968-6748 }",
	cited-references = "{ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. BIHLMAYER G, UNPUB. Blaha P., 1997, WIEN97. Brooks M. S. S., 1984, Handbook on the physics and chemistry of the actinides. Vol.1, P153. BROOKS MSS, 1991, J PHYS-CONDENS MAT, V3, P2357, DOI 10.1088/0953-8984/3/14/015. Brooks M.S.S., 1993, HDB MAGNETIC MAT, V7, P139, DOI 10.1016/S1567-2719(05)80044-7. DIMMOCK JO, 1964, PHYS REV LETT, V13, P750, DOI 10.1103/PhysRevLett.13.750. ERIKSSON O, 1995, PHYS REV B, V52, P4420, DOI 10.1103/PhysRevB.52.4420. Eschrig H, 1996, FUNDAMENTALS DENSITY. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HASS KC, 1984, PHYS REV B, V29, P3697, DOI 10.1103/PhysRevB.29.3697. HEINEMANN M, 1994, PHYS REV B, V49, P4348, DOI 10.1103/PhysRevB.49.4348. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. JANAK JF, 1975, PHYS REV B, V12, P1257, DOI 10.1103/PhysRevB.12.1257. Jensen J., 1991, RARE EARTH MAGNETISM. Katsnelson MI, 2000, PHYS REV B, V61, P8906, DOI 10.1103/PhysRevB.61.8906. KEETON SC, 1966, PHYS REV, V146, P429, DOI 10.1103/PhysRev.146.429. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. Kurz P, 2002, J PHYS-CONDENS MAT, V14, P6353, DOI 10.1088/0953-8984/14/25/305. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. MILLHOUSE AH, 1973, SOLID STATE COMMUN, V13, P339, DOI 10.1016/0038-1098(73)90605-4. NERESON NG, 1964, PHYS REV A-GEN PHYS, V135, pA176, DOI 10.1103/PhysRev.135.A176. Nordstrom L, 2000, EUROPHYS LETT, V49, P775, DOI 10.1209/epl/i2000-00218-2. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. PERDEW JP, 1986, PHYS REV B, V33, P8800, DOI 10.1103/PhysRevB.33.8800. Perlov AY, 2000, PHYS REV B, V61, P4070, DOI 10.1103/PhysRevB.61.4070. Richter M, 1998, J PHYS D APPL PHYS, V31, P1017, DOI 10.1088/0022-3727/31/9/002. SCHUMANN R, 1995, PHYS REV B, V52, P8801, DOI 10.1103/PhysRevB.52.8801. Shick AB, 1999, PHYS REV B, V60, P10763, DOI 10.1103/PhysRevB.60.10763. STAUNTON JB, 1992, PHYS REV LETT, V69, P371, DOI 10.1103/PhysRevLett.69.371. Strange P, 1999, NATURE, V399, P756, DOI 10.1038/21595. Turek I, 2003, J PHYS-CONDENS MAT, V15, P2771, DOI 10.1088/0953-8984/15/17/327. Turek I., 1997, ELECT STRUCTURE DISO. Tyablikov S. V., 1967, METHODS QUANTUM THEO. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WANG CS, 1982, PHYS REV B, V25, P5766, DOI 10.1103/PhysRevB.25.5766. WIMMER E, 1981, PHYS REV B, V24, P864, DOI 10.1103/PhysRevB.24.864.}",
	number-of-cited-references = "{41}",
	times-cited = "{26}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{10}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{763JN}",
	unique-id = "{ISI:000188081900076}"
}

S Khmelevskyi, I Turek and P Mohn. Large negative magnetic contribution to the thermal expansion in iron-platinum alloys: Quantitative theory of the Invar effect. PHYSICAL REVIEW LETTERS 91(3), 2003. BibTeX

@article{ ISI:000184428900040,
	author = "Khmelevskyi, S and Turek, I and Mohn, P",
	title = "{Large negative magnetic contribution to the thermal expansion in iron-platinum alloys: Quantitative theory of the Invar effect}",
	journal = "{PHYSICAL REVIEW LETTERS}",
	year = "{2003}",
	volume = "{91}",
	number = "{3}",
	month = "{JUL 18}",
	abstract = "{We show that the large negative magnetic contribution to the thermal expansion in disordered Fe-Pt alloys can be understood within the disordered local moment (DLM) approach. On the basis of first principles calculations we quantitatively describe the spontaneous volume magnetostriction for various Pt concentrations. It is found that the Invar effect in these alloys is entirely related to the state of thermal magnetic disorder modeled by the DLM states. We also show that the experimentally observed anomaly in the temperature dependence of the magnetization is due to a spontaneous reduction of the local magnetic moments rather than to `'hidden excitations.{''}}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Khmelevskyi, S (Reprint Author), Vienna Univ Technol, Ctr Computat Mat Sci, Vienna, Austria. Vienna Univ Technol, Ctr Computat Mat Sci, Vienna, Austria. Charles Univ, Dept Elect Struct, Prague, Czech Republic.}",
	doi = "{10.1103/PhysRevLett.91.037201}",
	article-number = "{037201}",
	issn = "{0031-9007}",
	keywords-plus = "{ORIGIN; SPIN; EXCITATIONS; FE65NI35; FE}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{ABRIKOSOV IA, 1995, PHYS REV B, V51, P1058, DOI 10.1103/PhysRevB.51.1058. AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Crisan V, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.014416. ENTEL P, 1993, PHYS REV B, V47, P8706, DOI 10.1103/PhysRevB.47.8706. GONIS A, 1992, STUDIES MATH PHYSICS, V4. Guillaume C.E., 1897, CR HEBD ACAD SCI, p{[}125, 235]. Hayn R, 1998, PHYS REV B, V58, P4341, DOI 10.1103/PhysRevB.58.4341. ISHIKAWA Y, 1986, SOLID STATE COMMUN, V57, P531, DOI 10.1016/0038-1098(86)90624-1. Khmelevskyi S, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.220404. LYNN JW, 1994, J APPL PHYS, V75, P6069, DOI 10.1063/1.355460. Mohn P, 1999, NATURE, V400, P18, DOI 10.1038/21778. Mohn P., 2003, SPRINGER SERIES SOLI, V134. MORUZZI VL, 1990, PHYS REV B, V41, P6939, DOI 10.1103/PhysRevB.41.6939. PINDOR AJ, 1983, J PHYS F MET PHYS, V13, P979, DOI 10.1088/0305-4608/13/5/012. Shiga M., 1994, MAT SCI TECHNOLOGY B, V3B, P159. SUMIYAMA K, 1979, J PHYS F MET PHYS, V9, P1665, DOI 10.1088/0305-4608/9/8/017. Turek I., 1997, ELECT STRUCTURE DISO. UHL M, 1994, PHYS REV B, V50, P291, DOI 10.1103/PhysRevB.50.291. van Schilfgaarde M, 1999, NATURE, V400, P46, DOI 10.1038/21848. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Wang Y, 1997, J APPL PHYS, V81, P3873, DOI 10.1063/1.364740. WASSERMAN EF, 1990, FERROMAGNETIC MATERI, V5, P237. WEISS RJ, 1963, P PHYS SOC LOND, V82, P281, DOI 10.1088/0370-1328/82/2/314.}",
	number-of-cited-references = "{24}",
	times-cited = "{44}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{16}",
	journal-iso = "{Phys. Rev. Lett.}",
	doc-delivery-number = "{706AF}",
	unique-id = "{ISI:000184428900040}"
}

I Turek, J Kudrnovsky, G Bihlmayer and S Blugel. Ab initio theory of exchange interactions and the Curie temperature of bulk Gd. JOURNAL OF PHYSICS-CONDENSED MATTER 15(17):2771-2782, 2003. BibTeX

@article{ ISI:000183071400031,
	author = "Turek, I and Kudrnovsky, J and Bihlmayer, G and Blugel, S",
	title = "{Ab initio theory of exchange interactions and the Curie temperature of bulk Gd}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{2003}",
	volume = "{15}",
	number = "{17}",
	pages = "{2771-2782}",
	month = "{MAY 7}",
	abstract = "{An ab initio approach to the magnetic properties of bulk hexagonal Gd is developed that is based on the local spin-density approximation with the 4f electrons treated as localized core electrons. The effective one-electron problem is solved using the tight-binding linear muffin-tin orbital method in the atomic-sphere approximation with the valence basis consisting of s-, p- and d-type orbitals. The approach leads to a correct description of the ground-state properties like the stability of the ferromagnetic structure, the magnetic moment and the equilibrium lattice constant. Application of a real-space Green-function formalism yields the exchange pair interactions between distant neighbours that are inevitable for quantitative studies of magnetic excitations. The distance dependence and anisotropy of the exchange pair interactions are presented and the Curie temperature in the mean-field approximation is evaluated. The obtained value of 334 K is in much better agreement with the experimental value of 293 K than previous theoretical results. Depending on the atomic volume we find an unusually large dependence of the Curie temperature on the c/a ratio, which bears important consequences for the critical temperatures of thick strained Gd films as grown on various substrates.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ Prague, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Univ Osnabruck, Fachbereich Phys, D-49069 Osnabruck, Germany.}",
	doi = "{10.1088/0953-8984/15/17/327}",
	article-number = "{PII S0953-8984(03)56651-6}",
	issn = "{0953-8984}",
	eissn = "{1361-648X}",
	keywords-plus = "{ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; GD(0001) SURFACE; BAND-STRUCTURE; GADOLINIUM; METALS; FILMS; TB}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bihlmayer, Gustav/G-5279-2013 Blugel, Stefan/J-8323-2013 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Bihlmayer, Gustav/0000-0002-6615-1122 Blugel, Stefan/0000-0001-9987-4733 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{AHUJA R, 1994, PHYS REV B, V50, P5147, DOI 10.1103/PhysRevB.50.5147. ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. BANISTER JR, 1954, PHYS REV, V94, P1140, DOI 10.1103/PhysRev.94.1140. Brooks M.S.S., 1993, HDB MAGNETIC MAT, V7, P139, DOI 10.1016/S1567-2719(05)80044-7. ERIKSSON O, 1995, PHYS REV B, V52, P4420, DOI 10.1103/PhysRevB.52.4420. FARLE M, 1993, PHYS REV B, V47, P11571, DOI 10.1103/PhysRevB.47.11571. GAJDZIK M, 1995, Z PHYS B CON MAT, V98, P541, DOI 10.1007/BF01320855. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HARMON BN, 1995, J PHYS CHEM SOLIDS, V56, P1521, DOI 10.1016/0022-3697(95)00122-0. HEINEMANN M, 1994, PHYS REV B, V49, P4348, DOI 10.1103/PhysRevB.49.4348. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. Jenkins AC, 2000, J PHYS-CONDENS MAT, V12, P10441, DOI 10.1088/0953-8984/12/50/307. Jenkins AC, 1999, J MAGN MAGN MATER, V198-99, P567, DOI 10.1016/S0304-8853(98)01213-X. Jensen J., 1991, RARE EARTH MAGNETISM. Kurz P, 2002, J PHYS-CONDENS MAT, V14, P6353, DOI 10.1088/0953-8984/14/25/305. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. LINDGARD PA, 1978, PHYS REV B, V17, P2348, DOI 10.1103/PhysRevB.17.2348. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. PASCHEN U, 1993, Z PHYS B CON MAT, V90, P289, DOI 10.1007/BF01433050. Rex S, 1999, J MAGN MAGN MATER, V192, P529, DOI 10.1016/S0304-8853(98)01054-3. Richter M, 1998, J PHYS D APPL PHYS, V31, P1017, DOI 10.1088/0022-3727/31/9/002. Sabiryanov RF, 1997, PHYS REV B, V55, P4117, DOI 10.1103/PhysRevB.55.4117. Shick AB, 1999, PHYS REV B, V60, P10763, DOI 10.1103/PhysRevB.60.10763. Shick AB, 2000, PHYS REV B, V61, pR9213, DOI 10.1103/PhysRevB.61.R9213. Simmons G., 1971, SINGLE CRYSTAL ELAST. STAUNTON JB, 1992, PHYS REV LETT, V69, P371, DOI 10.1103/PhysRevLett.69.371. STETTER U, 1992, PHYS REV B, V45, P503, DOI 10.1103/PhysRevB.45.503. Turek I., 1997, ELECT STRUCTURE DISO. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. VOSKO SH, 1980, CAN J PHYS, V58, P1200.}",
	number-of-cited-references = "{33}",
	times-cited = "{58}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{7}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{682BW}",
	unique-id = "{ISI:000183071400031}"
}

M Zwierzycki, K Xia, PJ Kelly, GEW Bauer and I Turek. Spin-injection through an Fe/InAs interface. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE 196(1):25-28, Březen 2003. European Conference on Physics of Magnetism, POZNAN, POLAND, JUL 01-05, 2002. BibTeX

@article{ ISI:000182123900007,
	author = "Zwierzycki, M and Xia, K and Kelly, PJ and Bauer, GEW and Turek, I",
	title = "{Spin-injection through an Fe/InAs interface}",
	journal = "{PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE}",
	year = "{2003}",
	volume = "{196}",
	number = "{1}",
	pages = "{25-28}",
	month = "{MAR}",
	note = "{European Conference on Physics of Magnetism, POZNAN, POLAND, JUL 01-05, 2002}",
	abstract = "{The spin-dependence of the interface resistance between ferromagnetic Fe and InAs is calculated from first-principles for specular and disordered (001) interfaces. Because of the symmetry mismatch in the minority-spin channel, the specular interface acts as an efficient spin filter with a transmitted current polarisation between 98 an 89\%. The resistance of a specular interface in the diffusive regime is comparable to the resistance of a few microns of bulk InAs. Symmetry-breaking arising from interface disorder reduces the spin asymmetry substantially and we conclude that efficient spin injection from Fe into InAs can only be realized using high quality epitaxial interfaces.}",
	publisher = "{WILEY-V C H VERLAG GMBH}",
	address = "{BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Zwierzycki, M (Reprint Author), Univ Twente, Fac Appl Phys, POB 217, NL-7500 AE Enschede, Netherlands. Univ Twente, Fac Appl Phys, NL-7500 AE Enschede, Netherlands. Univ Twente, MESA Res Inst, NL-7500 AE Enschede, Netherlands. Inst Mol Phys, PL-60179 Poznan, Poland. Delft Univ Technol, Dept Appl Phys, NL-2628 CJ Delft, Netherlands. Delft Univ Technol, DIMES, NL-2628 CJ Delft, Netherlands. Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic.}",
	doi = "{10.1002/pssa.200306344}",
	issn = "{1862-6300}",
	keywords-plus = "{GIANT MAGNETORESISTANCE; MAGNETIC MULTILAYERS; SEMICONDUCTOR}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bauer, Gerrit/F-8273-2010 Kelly, Paul/G-4210-2010 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Bauer, Gerrit/0000-0002-3615-8673 Kelly, Paul/0000-0001-9040-1868 }",
	cited-references = "{ABRAM RA, 1978, ADV PHYS, V27, P779. Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. Ansermet JP, 1998, J PHYS-CONDENS MAT, V10, P6027, DOI 10.1088/0953-8984/10/27/005. BARTHELEMY A, 1999, HDB MAGNETIC MAT, V12, P47204. Datta S., 1995, ELECT TRANSPORT MESO. Fiederling R, 1999, NATURE, V402, P787, DOI 10.1038/45502. Gijs MAM, 1997, ADV PHYS, V46, P285, DOI 10.1080/00018739700101518. Grundler D, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.161307. Hanbicki AT, 2002, APPL PHYS LETT, V80, P1240, DOI 10.1063/1.1449530. Hu CM, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.066803. Kirczenow G, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.054422. Ohno Y, 1999, NATURE, V402, P790. Rashba E. I., 2000, Physical Review B (Condensed Matter), V62, pR16267, DOI 10.1103/PhysRevB.62.R16267. Schep KM, 1997, PHYS REV B, V56, P10805, DOI 10.1103/PhysRevB.56.10805. Schmidt G., 2000, PHYS REV B, V62, P4790. Tsymbal EY, 2001, SOLID STATE PHYS, V56, P113, DOI 10.1016/S0081-1947(01)80019-9. Turek I., 1997, ELECT STRUCTURE DISO. WUNNICKE O, CONDMAT0201280. Xia K, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.064407. Zhu HJ, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.016601.}",
	number-of-cited-references = "{20}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{4}",
	journal-iso = "{Phys. Status Solidi A-Appl. Mat.}",
	doc-delivery-number = "{665MC}",
	unique-id = "{ISI:000182123900007}"
}

I Turek, J Kudrnovsky, V Drchal, P Bruno and S Blugel. Ab initio theory of exchange interactions in itinerant magnets. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS 236(2):318-324, Březen 2003. European Conference on Physics of Magnetism (PM 02), POZNAN, POLAND, JUL 01-05, 2002. BibTeX

@article{ ISI:000181757800012,
	author = "Turek, I and Kudrnovsky, J and Drchal, V and Bruno, P and Blugel, S",
	title = "{Ab initio theory of exchange interactions in itinerant magnets}",
	journal = "{PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS}",
	year = "{2003}",
	volume = "{236}",
	number = "{2}",
	pages = "{318-324}",
	month = "{MAR}",
	note = "{European Conference on Physics of Magnetism (PM 02), POZNAN, POLAND, JUL 01-05, 2002}",
	abstract = "{The paper reviews an ab initio two-step procedure to determine thermodynamic properties of itinerant magnets. In the first step, the selfconsistent electronic structure of a system is calculated using the tight-binding linear muffin-tin orbital method combined with Green function techniques. In the second step, the parameters of the effective classical Heisenberg Hamiltonian are determined using the magnetic force theorem and they are employed in subsequent evaluation of magnon spectra, the spin-wave stiffness constants and the Curie/Neel temperatures. Applicability of the developed scheme is illustrated by investigations of selected properties of 3d metals Fe, Co, and Ni, diluted magnetic semiconductors (Ga,Mn)As, and 4f metals Gd and Eu.}",
	publisher = "{WILEY-V C H VERLAG GMBH}",
	address = "{BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, Brno 61662, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic. Charles Univ Prague, Dept Elect Struct, Prague 12116 2, Czech Republic. Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle An Der Saale, Germany. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany.}",
	doi = "{10.1002/pssb.200301671}",
	issn = "{0370-1972}",
	keywords-plus = "{OSCILLATORY CURIE-TEMPERATURE; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Blugel, Stefan/J-8323-2013 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Blugel, Stefan/0000-0001-9987-4733 Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. Bruno P, 2002, J MAGN MAGN MATER, V240, P346, DOI 10.1016/S0304-8853(01)00796-X. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. KUDRNOVSKY J, IN PRESS. Kurz P, 2002, J PHYS-CONDENS MAT, V14, P6353, DOI 10.1088/0953-8984/14/25/305. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. MILLHOUSE AH, 1973, SOLID STATE COMMUN, V13, P339, DOI 10.1016/0038-1098(73)90605-4. NERESON NG, 1964, PHYS REV, V135, P176. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. Turek I., 1997, ELECT STRUCTURE DISO. Tyablikov S. V., 1967, METHODS QUANTUM THEO.}",
	number-of-cited-references = "{17}",
	times-cited = "{9}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{9}",
	journal-iso = "{Phys. Status Solidi B-Basic Solid State Phys.}",
	doc-delivery-number = "{659BT}",
	unique-id = "{ISI:000181757800012}"
}

M Zwierzycki, K Xia, PJ Kelly, GEW Bauer and I Turek. Spin injection through an Fe/InAs interface. PHYSICAL REVIEW B 67(9), 2003. BibTeX

@article{ ISI:000182019300011,
	author = "Zwierzycki, M and Xia, K and Kelly, PJ and Bauer, GEW and Turek, I",
	title = "{Spin injection through an Fe/InAs interface}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2003}",
	volume = "{67}",
	number = "{9}",
	month = "{MAR 1}",
	abstract = "{The spin dependence of the interface resistance between ferromagnetic Fe and InAs is calculated from first principles for specular and disordered (001) interfaces. Because of the symmetry mismatch in the minority-spin channel, the specular interface acts as an efficient spin filter with a transmitted current polarization between 98\% and 89\%. The resistance of a specular interface in the diffusive regime is comparable to the resistance of a few microns of bulk InAs. Symmetry breaking arising from interface disorder reduces the spin asymmetry substantially, and we conclude that efficient spin injection from Fe into InAs can only be realized using high-quality epitaxial interfaces.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Univ Twente, Res Inst, Fac Appl Phys \& MESA, POB 217, NL-7500 AE Enschede, Netherlands. Univ Twente, Res Inst, Fac Appl Phys \& MESA, NL-7500 AE Enschede, Netherlands. Delft Univ Technol, Dept Appl Phys, NL-2628 CJ Delft, Netherlands. Delft Univ Technol, DIMES, NL-2628 CJ Delft, Netherlands. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. PAN, Inst Mol Phys, PL-60179 Poznan, Poland.}",
	doi = "{10.1103/PhysRevB.67.092401}",
	article-number = "{092401}",
	issn = "{2469-9950}",
	eissn = "{2469-9969}",
	keywords-plus = "{GIANT MAGNETORESISTANCE; MAGNETIC MULTILAYERS; HETEROSTRUCTURE; SEMICONDUCTOR; TRANSPORT}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bauer, Gerrit/F-8273-2010 Kelly, Paul/G-4210-2010 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Bauer, Gerrit/0000-0002-3615-8673 Kelly, Paul/0000-0001-9040-1868 }",
	cited-references = "{ABRAM RA, 1978, ADV PHYS, V27, P799, DOI 10.1080/00018737800101484. Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. Ansermet JP, 1998, J PHYS-CONDENS MAT, V10, P6027, DOI 10.1088/0953-8984/10/27/005. BARTHELEMY A, 1999, HDB MAGNETIC MAT, V12, P47204. BEENAKKER CWJ, 1991, SOLID STATE PHYS, V44, P1. Datta S., 1995, ELECT TRANSPORT MESO. Fert A, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.184420. Fiederling R, 1999, NATURE, V402, P787, DOI 10.1038/45502. Gijs MAM, 1997, ADV PHYS, V46, P285, DOI 10.1080/00018739700101518. Grundler D, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.161307. Hanbicki AT, 2002, APPL PHYS LETT, V80, P1240, DOI 10.1063/1.1449530. Hu CM, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.066803. Kirczenow G, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.054422. MacLaren JM, 1999, PHYS REV B, V59, P5470, DOI 10.1103/PhysRevB.59.5470. Mavropoulos P, 2000, PHYS REV LETT, V85, P1088, DOI 10.1103/PhysRevLett.85.1088. Motsnyi VF, 2002, APPL PHYS LETT, V81, P265, DOI 10.1063/1.1491010. Ohno Y, 1999, NATURE, V402, P790. Rashba EI, 2000, PHYS REV B, V62, pR16267. Schep KM, 1997, PHYS REV B, V56, P10805, DOI 10.1103/PhysRevB.56.10805. Schep KM, 1998, PHYS REV B, V57, P8907, DOI 10.1103/PhysRevB.57.8907. SCHEP KM, 1995, PHYS REV LETT, V74, P586, DOI 10.1103/PhysRevLett.74.586. Schmidt G, 2000, PHYS REV B, V62, pR4790, DOI 10.1103/PhysRevB.62.R4790. Stiles MD, 2000, PHYS REV B, V61, P3200, DOI 10.1103/PhysRevB.61.3200. Tsymbal EY, 2001, SOLID STATE PHYS, V56, P113, DOI 10.1016/S0081-1947(01)80019-9. Turek I., 1997, ELECT STRUCTURE DISO. Wunnicke O, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.241306. Xia K, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.064407. ZAHN P, 1995, PHYS REV LETT, V75, P2996, DOI 10.1103/PhysRevLett.75.2996. Zhu HJ, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.016601.}",
	number-of-cited-references = "{29}",
	times-cited = "{55}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{9}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{663RL}",
	unique-id = "{ISI:000182019300011}"
}

J Kudrnovsky, I Turek, V Drchal, F Maca, J Masek, P Weinberger and P Bruno. Ab initio study of Curie temperatures of diluted magnetic semiconductors. JOURNAL OF SUPERCONDUCTIVITY 16(1):119-122, Únor 2003. PASPS Conference 2002, WURZBURG, GERMANY, JUL, 2002. BibTeX

@article{ ISI:000182060400029,
	author = "Kudrnovsky, J and Turek, I and Drchal, V and Maca, F and Masek, J and Weinberger, P and Bruno, P",
	title = "{Ab initio study of Curie temperatures of diluted magnetic semiconductors}",
	journal = "{JOURNAL OF SUPERCONDUCTIVITY}",
	year = "{2003}",
	volume = "{16}",
	number = "{1}",
	pages = "{119-122}",
	month = "{FEB}",
	note = "{PASPS Conference 2002, WURZBURG, GERMANY, JUL, 2002}",
	organization = "{PASPS}",
	abstract = "{The Curie temperature of diluted (Ga,Mn) As magnetic semiconductors in the presence of As antisites is studied from first principles. We map total energies associated with rotations of Mn-magnetic moments onto the effective classical Heisenberg Hamiltonian which is treated in the mean-field approximation to find the Curie temperature. The presence of donors strongly reduces the Curie temperature and gives rise to a ground state with a partial disorder of local moments. We show that the observed dependence of the Curie temperature on the Mn concentration indicates that the concentration of As antisites increases with the Mn content.}",
	publisher = "{KLUWER ACADEMIC/PLENUM PUBL}",
	address = "{233 SPRING ST, NEW YORK, NY 10013 USA}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Na Slovance 2, CZ-18221 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle Saale, Germany. AS CR, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ, Dept Elect Struct, CZ-12116 Prague, Czech Republic. Tech Univ Vienna, Ctr Computat Mat Sci, A-1060 Vienna, Austria.}",
	doi = "{10.1023/A:1023257306608}",
	issn = "{0896-1107}",
	keywords = "{Curie temperature; Heisenberg model; diluted magnetic semiconductors; ab initio approach; As antisites}",
	keywords-plus = "{EXCHANGE INTERACTIONS; FERROMAGNETISM; DISORDER; ALLOYS; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Applied; Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Maca, Frantisek/G-4467-2014 Turek, Ilja/G-5553-2014 Masek, Jan/G-5813-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{AKAI H, 1993, PHYS REV B, V47, P8739, DOI 10.1103/PhysRevB.47.8739. Akai H, 1998, PHYS REV LETT, V81, P3002, DOI 10.1103/PhysRevLett.81.3002. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. Dietl T, 2000, SCIENCE, V287, P1019, DOI 10.1126/science.287.5455.1019. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. Korzhavyi PA, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.187202. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. Schliemann J, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.137201. Schulthess TC, 2001, J APPL PHYS, V89, P7021, DOI 10.1063/1.1359456. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{13}",
	times-cited = "{21}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{J. Supercond.}",
	doc-delivery-number = "{664KN}",
	unique-id = "{ISI:000182060400029}"
}

I Turek, S Blugel, G Bihlmayer and P Weinberger. Exchange interactions at surfaces of Fe, Co, and Gd. CZECHOSLOVAK JOURNAL OF PHYSICS 53(1):81-88, Leden 2003. 9th Symposium on Surface Physics, TREST CASTLE, CZECH REPUBLIC, FEB 02-06, 2002. BibTeX

@article{ ISI:000180868400013,
	author = "Turek, I and Blugel, S and Bihlmayer, G and Weinberger, P",
	title = "{Exchange interactions at surfaces of Fe, Co, and Gd}",
	journal = "{CZECHOSLOVAK JOURNAL OF PHYSICS}",
	year = "{2003}",
	volume = "{53}",
	number = "{1}",
	pages = "{81-88}",
	month = "{JAN}",
	note = "{9th Symposium on Surface Physics, TREST CASTLE, CZECH REPUBLIC, FEB 02-06, 2002}",
	abstract = "{Magnetic exchange interactions at low-index surfaces of bcc iron, hcp cobalt, and hcp gadolinium axe studied using ab initio electronic structure calculations. Interlayer exchange couplings derived from total-energy differences are enhanced at the surfaces over their bulk counterparts. This trend is in contrast to a surface reduction of on-site exchange parameters formulated within a classical Heisenberg model. A particular attention is paid to the sensitivity of exchange interactions at a Gd(0001) surface to relaxation of interlayer distances. The calculated results do not provide support for recently observed surface enhancement of the Curie temperature of the Gd metal.}",
	publisher = "{INST PHYSICS ACAD SCI CZECH REPUBLIC}",
	address = "{NA SLOVANCE 2, PRAGUE 182 21, CZECH REPUBLIC}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Vienna Univ Technol, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Charles Univ Prague, Dept Elect Struct, Prague, Czech Republic. Univ Osnabruck, Fachbereich Phys, D-4500 Osnabruck, Germany.}",
	doi = "{10.1023/A:1022363806047}",
	issn = "{0011-4626}",
	keywords = "{surface magnetism; exchange interactions; Curie temperature}",
	keywords-plus = "{ELECTRONIC-STRUCTURE; GD(0001) SURFACE; TRANSITION}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Bihlmayer, Gustav/G-5279-2013 Blugel, Stefan/J-8323-2013 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Bihlmayer, Gustav/0000-0002-6615-1122 Blugel, Stefan/0000-0001-9987-4733 }",
	cited-references = "{Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. Arnold CS, 2000, PHYS REV LETT, V85, P5202, DOI 10.1103/PhysRevLett.85.5202. BLUGEL S, 1993, MAGNETISMUS FESTKORP. GIERGIEL J, 1995, PHYS REV B, V51, P10201, DOI 10.1103/PhysRevB.51.10201. Kurz P, 2002, J PHYS-CONDENS MAT, V14, P6353, DOI 10.1088/0953-8984/14/25/305. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Shick AB, 2000, PHYS REV B, V61, pR9213, DOI 10.1103/PhysRevB.61.R9213. Tober ED, 1998, PHYS REV LETT, V81, P2360, DOI 10.1103/PhysRevLett.81.2360. Turek I., 1997, ELECT STRUCTURE DISO. WEINERT M, 1994, MAGNETIC MULTILAYERS, P51. WIMMER E, 1981, PHYS REV B, V24, P864, DOI 10.1103/PhysRevB.24.864.}",
	number-of-cited-references = "{12}",
	times-cited = "{4}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{Czech. J. Phys.}",
	doc-delivery-number = "{643NY}",
	unique-id = "{ISI:000180868400013}"
}

S Khmelevskyi, I Turek and P Mohn. Microscopic theory of magnetization processes in Y(Co1-xAlx)(2). JOURNAL OF PHYSICS-CONDENSED MATTER 14(50):13799-13811, 2002. BibTeX

@article{ ISI:000185020400011,
	author = "Khmelevskyi, S and Turek, I and Mohn, P",
	title = "{Microscopic theory of magnetization processes in Y(Co1-xAlx)(2)}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{2002}",
	volume = "{14}",
	number = "{50}",
	pages = "{13799-13811}",
	month = "{DEC 23}",
	abstract = "{Employing ab initio electronic structure calculations we study the development of the magnetic properties in Y(Co1-xAlx)(2) for varying Al concentration. The effect of substitutional disorder is treated in the coherent-potential approximation implemented within a fight-binding linear muffin-tin orbital method. The experimentally observed reduction of the critical field of the itinerant electron metamagnetic phase transition with increasing content of non-magnetic Al is explained. It is shown, on the basis of a T = 0 K Stoner type itinerant magnetism theory, that the alloying-induced changes in the shape of the calculated density of states, caused by the Al substitution, lead to (i) a stabilization of the magnetic state, (ii) a smoothening of the first-order metamagnetic transition and (iii) a subsequent suppression of the metamagnetic transition around x = 0.15. Analysing the magnetization processes in Y(Co1-xAlx)(2) by varying the strength of the exchange interaction, we provide a microscopical background to earlier phenomenological assumptions made in the literature.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Khmelevskyi, S (Reprint Author), Vienna Univ Technol, Ctr Computat Mat Sci, Vienna, Austria. Vienna Univ Technol, Ctr Computat Mat Sci, Vienna, Austria.}",
	doi = "{10.1088/0953-8984/14/50/307}",
	article-number = "{PII S0953-8984(02)52825-3}",
	issn = "{0953-8984}",
	eissn = "{1361-648X}",
	keywords-plus = "{ITINERANT-ELECTRON METAMAGNETISM; SPIN FLUCTUATIONS; VOLUME MAGNETOSTRICTION; RARE-EARTH; RCO2 R; YCO2; DEPENDENCE; MAGNETISM; PRESSURE; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 }",
	orcid-numbers = "{Khmelevskyi, Sergii/0000-0001-5630-7835}",
	cited-references = "{ALEKSANDRYAN VV, 1985, ZH EKSP TEOR FIZ, V62, P153. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. AOKI M, 1992, PHYSICA B, V177, P259, DOI 10.1016/0921-4526(92)90108-5. AOKI M, 1992, J MAGN MAGN MATER, V78, P377. ARMITAGE JGM, 1990, J PHYS-CONDENS MAT, V2, P8779, DOI 10.1088/0953-8984/2/44/007. Burzo E., 1972, International Journal of Magnetism, V3, P161. Divis M, 2002, CZECH J PHYS, V52, P247, DOI 10.1023/A:1014436116284. DUC NH, 1993, J MAGN MAGN MATER, V125, P323, DOI 10.1016/0304-8853(93)90106-C. Duc N. H., 1999, HDB PHYS CHEM RARE E, V26. DUC NH, 1999, HDB MAGNETIC MAT, V12, pCH. GOTO T, 1989, SOLID STATE COMMUN, V72, P945, DOI 10.1016/0038-1098(89)90433-X. Gratz E, 2001, J PHYS-CONDENS MAT, V13, pR385, DOI 10.1088/0953-8984/13/23/202. GUNNARSSON O, 1976, J PHYS F MET PHYS, V6, P587, DOI 10.1088/0305-4608/6/4/018. HASS KC, 1984, PHYS REV B, V29, P3697, DOI 10.1103/PhysRevB.29.3697. Hauser R, 2000, PHYS REV B, V61, P1198, DOI 10.1103/PhysRevB.61.1198. INOUE J, 1982, J PHYS F MET PHYS, V12, P1811, DOI 10.1088/0305-4608/12/8/021. JANAK JF, 1977, PHYS REV B, V16, P255, DOI 10.1103/PhysRevB.16.255. Khmelevskyi S, 2000, J PHYS-CONDENS MAT, V12, P9453, DOI 10.1088/0953-8984/12/45/308. Khmelevskyi S, 2001, J PHYS-CONDENS MAT, V13, P8405, DOI 10.1088/0953-8984/13/36/313. KOELLING DD, 1977, J PHYS C SOLID STATE, V10, P3107, DOI 10.1088/0022-3719/10/16/019. Lemaire R., 1966, COBALT, V33, P201. MOHN P, 1992, J MAGN MAGN MATER, V104, P685, DOI 10.1016/0304-8853(92)90984-V. PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048. SAKAKIBARA T, 1990, J PHYS-CONDENS MAT, V2, P3381, DOI 10.1088/0953-8984/2/14/022. SAKAKIBARA T, 1986, PHYS LETT A, V117, P243, DOI 10.1016/0375-9601(86)90085-X. SCHWARZ K, 1984, J PHYS F MET PHYS, V14, pL129, DOI 10.1088/0305-4608/14/7/008. SHIMIZU M, 1982, J PHYS-PARIS, V43, P155, DOI 10.1051/jphys:01982004301015500. Syshchenko O, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.054433. TAKAHASHI Y, 1995, J MAGN MAGN MATER, V140, P193, DOI 10.1016/0304-8853(94)01073-0. TAKAHASHI Y, 1995, J PHYS-CONDENS MAT, V7, P6279, DOI 10.1088/0953-8984/7/31/011. Turek I., 1997, ELECT STRUCTURE DISO. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WADA H, 1988, SOLID STATE COMMUN, V65, P23, DOI 10.1016/0038-1098(88)90579-0. WOHLFARTH EP, 1962, PHILOS MAG, V7, P1817, DOI 10.1080/14786436208213848. YAMADA H, 1984, J PHYS F MET PHYS, V14, P1943, DOI 10.1088/0305-4608/14/8/023. YOSHIMURA K, 1985, SOLID STATE COMMUN, V56, P767, DOI 10.1016/0038-1098(85)90305-9. YOSHIMURA K, 1988, PHYS REV B, V37, P3593, DOI 10.1103/PhysRevB.37.3593.}",
	number-of-cited-references = "{38}",
	times-cited = "{7}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{7}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{716GL}",
	unique-id = "{ISI:000185020400011}"
}

J Kudrnovsky, V Drchal, I Turek, P Weinberger and P Bruno. Perpendicular transport in layered magnetic systems: ab initio study. COMPUTATIONAL MATERIALS SCIENCE 25(4):584-589, Prosinec 2002. Conference on Simulation of Physical Phenomena in Technological Applications, MADRID, SPAIN, SEP 24-26, 2001. BibTeX

@article{ ISI:000179332800010,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Weinberger, P and Bruno, P",
	title = "{Perpendicular transport in layered magnetic systems: ab initio study}",
	journal = "{COMPUTATIONAL MATERIALS SCIENCE}",
	year = "{2002}",
	volume = "{25}",
	number = "{4}",
	pages = "{584-589}",
	month = "{DEC}",
	note = "{Conference on Simulation of Physical Phenomena in Technological Applications, MADRID, SPAIN, SEP 24-26, 2001}",
	organization = "{COST P3}",
	abstract = "{We will review the results of the ab initio study of the current-perpendicular-to-plane magnetotransport of a sample sandwiched by two ideal leads. The `active' part of the system is either a trilayer consisting of two magnetic slabs of a finite thickness separated by a non-magnetic spacer, or a multilayer formed by alternating magnetic and non-magnetic layers. We use the Kubo-Landauer formulation of the conductance based on surface Green functions as formulated by means of the tight-binding linear muffin-tin orbital method. The formalism is extended to the case of lateral supercells with random arrangements of atoms of two types, which in turn allows to deal with specular and diffusive scattering on equal footing. Applications refer to fcc-based Co/Cu/Co(0 0 1) multilayers including the transport through layers with non-collinear alignments of their magnetizations. We consider in detail the effect of substitutional alloying in the spacer as well as interdiffusion at the interfaces between magnetic and spacer layers. (C) 2002 Elsevier Science B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18040 Prague 8, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18040 Prague 8, Czech Republic. AS CR, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ Prague, Dept Elect Struct, CZ-12116 Prague, Czech Republic. Univ Technol, Inst Tech Electrochem, A-1060 Vienna, Austria. Max Planck Inst Mikrostrukturphys, D-06120 Halle An Der Saale, Germany.}",
	doi = "{10.1016/S0927-0256(02)00338-5}",
	article-number = "{PII S0927-0256(02)00338-5}",
	issn = "{0927-0256}",
	keywords = "{magnetotransport; multilayers; current perpendicular-to-planes; ab initio study}",
	keywords-plus = "{TIGHT-BINDING THEORY; GIANT MAGNETORESISTANCE; ELECTRICAL-CONDUCTIVITY; METALLIC MULTILAYERS; DOMAIN-WALLS; CO; CU}",
	research-areas = "{Materials Science}",
	web-of-science-categories = "{Materials Science, Multidisciplinary}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. BAIBICH MN, 1988, PHYS REV LETT, V61, P2472, DOI 10.1103/PhysRevLett.61.2472. Bass J, 1999, J MAGN MAGN MATER, V200, P274, DOI 10.1016/S0304-8853(99)00316-9. Bozec D, 2000, PHYS REV LETT, V85, P1314, DOI 10.1103/PhysRevLett.85.1314. BUTLER WH, 1995, PHYS REV B, V52, P13399, DOI 10.1103/PhysRevB.52.13399. Gijs MAM, 1997, ADV PHYS, V46, P285, DOI 10.1080/00018739700101518. Kudrnovsky J, 2001, SURF SCI, V482, P1107, DOI 10.1016/S0039-6028(01)00801-9. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Levy PM, 1994, SOLID STATE PHYS, V47, P367, DOI 10.1016/S0081-1947(08)60642-6. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. Mathon J, 1997, PHYS REV B, V56, P11810, DOI 10.1103/PhysRevB.56.11810. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. PRATT WP, 1991, PHYS REV LETT, V66, P3060, DOI 10.1103/PhysRevLett.66.3060. Sanvito S, 1999, PHYS REV B, V59, P11936, DOI 10.1103/PhysRevB.59.11936. Schep KM, 1998, PHYS REV B, V57, P8907, DOI 10.1103/PhysRevB.57.8907. STOVNENG JA, 1994, PHYS REV B, V49, P16494, DOI 10.1103/PhysRevB.49.16494. Turek I., 1997, ELECT STRUCTURE DISO. van Hoof JBAN, 1999, PHYS REV B, V59, P138, DOI 10.1103/PhysRevB.59.138. VERNES A, UNPUB. Weinberger P, 1996, J PHYS-CONDENS MAT, V8, P7677, DOI 10.1088/0953-8984/8/41/013. Xia K, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.064407. ZAHN P, 1995, PHYS REV LETT, V75, P3216.}",
	number-of-cited-references = "{22}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Comput. Mater. Sci.}",
	doc-delivery-number = "{616ZB}",
	unique-id = "{ISI:000179332800010}"
}

K Xia, PJ Kelly, GEW Bauer and I Turek. Spin-dependent transparency of ferromagnet/superconductor interfaces. PHYSICAL REVIEW LETTERS 89(16), 2002. BibTeX

@article{ ISI:000178384300036,
	author = "Xia, K and Kelly, PJ and Bauer, GEW and Turek, I",
	title = "{Spin-dependent transparency of ferromagnet/superconductor interfaces}",
	journal = "{PHYSICAL REVIEW LETTERS}",
	year = "{2002}",
	volume = "{89}",
	number = "{16}",
	month = "{OCT 14}",
	abstract = "{We combine parameter-free calculations of the transmission and reflection matrices for clean and dirty interfaces with a scattering-theory formulation of Andreev reflection (AR) generalized to spin-polarized systems in order to critically evaluate the use of an extended Blonder-Tinkham-Klapwijk (BTK) model to extract values of the spin polarization for ferromagnetic metals from measurements of point-contact AR. Excellent agreement with the experimental conductance data is found for Pb/Cu but it is less good for Pb/Ni and poor for Pb/Co, indicating that the BTK formalism does not describe transport through superconducting/ferromagnetic interfaces correctly.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Xia, K (Reprint Author), Univ Twente, Fac Appl Phys, POB 217, NL-7500 AE Enschede, Netherlands. Univ Twente, Fac Appl Phys, NL-7500 AE Enschede, Netherlands. Univ Twente, MESA Res Inst, NL-7500 AE Enschede, Netherlands. Delft Univ Technol, Dept Nanosci, NL-2628 CJ Delft, Netherlands. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevLett.89.166603}",
	article-number = "{166603}",
	issn = "{0031-9007}",
	eissn = "{1079-7114}",
	keywords-plus = "{FERROMAGNET-SUPERCONDUCTOR JUNCTIONS; ANDREEV REFLECTION; MAGNETIC MULTILAYERS; POINT-CONTACT; POLARIZATION; TRANSPORT}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Bauer, Gerrit/F-8273-2010 Kelly, Paul/G-4210-2010 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Bauer, Gerrit/0000-0002-3615-8673 Kelly, Paul/0000-0001-9040-1868 }",
	cited-references = "{Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. Beenakker CWJ, 1997, REV MOD PHYS, V69, P731, DOI 10.1103/RevModPhys.69.731. BELZIG W, COMMUNICATION. BLONDER GE, 1982, PHYS REV B, V25, P4515, DOI 10.1103/PhysRevB.25.4515. de Gennes P. G., 1966, SUPERCONDUCTIVITY ME. DEJONG MJM, 1995, PHYS REV LETT, V74, P1657, DOI 10.1103/PhysRevLett.74.1657. Gijs MAM, 1997, ADV PHYS, V46, P285, DOI 10.1080/00018739700101518. Ji Y, 2001, PHYS REV LETT, V86, P5585, DOI 10.1103/PhysRevLett.86.5585. Lambert CJ, 1998, J PHYS-CONDENS MAT, V10, P901, DOI 10.1088/0953-8984/10/5/003. Mazin II, 2001, J APPL PHYS, V89, P7576, DOI 10.1063/1.1357127. Mazin II, 1999, PHYS REV LETT, V83, P1427, DOI 10.1103/PhysRevLett.83.1427. Melin R, 2000, EUROPHYS LETT, V51, P202, DOI 10.1209/epl/i2000-00532-1. Nadgorny B, 2000, PHYS REV B, V61, pR3788, DOI 10.1103/PhysRevB.61.R3788. Schep KM, 1997, PHYS REV B, V56, P10805, DOI 10.1103/PhysRevB.56.10805. Sharvin Yu V, 1965, ZH EKSP TEOR FIZ, V48, P984. Soulen RJ, 1998, SCIENCE, V282, P85, DOI 10.1126/science.282.5386.85. Taddei F, 2001, J LOW TEMP PHYS, V124, P305, DOI 10.1023/A:1017546406402. Turek I., 1997, ELECT STRUCTURE DISO. Upadhyay SK, 1998, PHYS REV LETT, V81, P3247, DOI 10.1103/PhysRevLett.81.3247. Upadhyay SK, 1999, APPL PHYS LETT, V74, P3881, DOI 10.1063/1.124211. Xia K, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.064407. Zutic I, 2000, PHYS REV B, V61, P1555, DOI 10.1103/PhysRevB.61.1555. Zutic I, 1999, PHYS REV B, V60, P6320, DOI 10.1103/PhysRevB.60.6320.}",
	number-of-cited-references = "{23}",
	times-cited = "{53}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{10}",
	journal-iso = "{Phys. Rev. Lett.}",
	doc-delivery-number = "{600HJ}",
	unique-id = "{ISI:000178384300036}"
}

J Masek, I Turek, V Drchal, J Kudrnovsky and F Maca. Correlated doping in semiconductors: The role of donors in III-V diluted magnetic semiconductors. ACTA PHYSICA POLONICA A 102(4-5):673-678, 2002. 31st International School on Physics of Semiconduction Compounds, JASZOWIEC, POLAND, JUN 07-14, 2002. BibTeX

@article{ ISI:000179251900020,
	author = "Masek, J and Turek, I and Drchal, V and Kudrnovsky, J and Maca, F",
	title = "{Correlated doping in semiconductors: The role of donors in III-V diluted magnetic semiconductors}",
	journal = "{ACTA PHYSICA POLONICA A}",
	year = "{2002}",
	volume = "{102}",
	number = "{4-5}",
	pages = "{673-678}",
	month = "{OCT-NOV}",
	note = "{31st International School on Physics of Semiconduction Compounds, JASZOWIEC, POLAND, JUN 07-14, 2002}",
	abstract = "{We investigate the compositional dependence of the total energy of the mixed crystals (Ga,Mn)As co-doped with As, Sn, and Zn. Using the ab initio linear muffin-tin orbital coherent potential approximation method we find a correlation between the incorporation of acceptors (Mn, Zn) and donors (Sn, antisite As). In particular, the formation energy of As-Ga is reduced by approximately 0.1 eV in the presence of Mn, and vice versa. This leads to the self-compensating behavior of (Ga,Mn)As.}",
	publisher = "{POLISH ACAD SCIENCES INST PHYSICS}",
	address = "{AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Masek, J (Reprint Author), AS CR, Inst Phys, Slovance 2, Prague 18221 8, Czech Republic. AS CR, Inst Phys, Prague 18221 8, Czech Republic. AS CR, Inst Phys Mat, Brno 61662, Czech Republic. Charles Univ Prague, Fac Math \& Phys, Prague, Czech Republic.}",
	issn = "{0587-4246}",
	eissn = "{1898-794X}",
	keywords-plus = "{FERROMAGNETISM}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Maca, Frantisek/G-4467-2014 Masek, Jan/G-5813-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417 }",
	cited-references = "{Beschoten B, 1999, PHYS REV LETT, V83, P3073, DOI 10.1103/PhysRevLett.83.3073. Dietl T, 2000, SCIENCE, V287, P1019, DOI 10.1126/science.287.5455.1019. EDMONDS KW, CONDMAT0205517. Ioffe A F, 1960, PROGRESS SEMICONDUCT, V4, P237. KUDRNOVSKY J, UNPUB PHYS REV B. Maca F, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.235209. Masek J, 2001, ACTA PHYS POL A, V100, P319. Ohno H, 1999, J MAGN MAGN MATER, V200, P110, DOI 10.1016/S0304-8853(99)00444-8. Shimizu H, 1999, APPL PHYS LETT, V74, P398, DOI 10.1063/1.123082. Turek I., 1997, ELECT STRUCTURE DISO. VELICKY B, 1968, PHYS REV, V175, P747, DOI 10.1103/PhysRev.175.747.}",
	number-of-cited-references = "{11}",
	times-cited = "{13}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Acta Phys. Pol. A}",
	doc-delivery-number = "{615ND}",
	unique-id = "{ISI:000179251900020}"
}

P Weinberger, V Drchal, J Kudrnovsky, I Turek, H Herper, L Szunyogh and C Sommers. Aspects of magnetotunnelling drawn from ab-initio-type calculations. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES 82(9):1027-1045, Červen 2002. BibTeX

@article{ ISI:000175789300003,
	author = "Weinberger, P and Drchal, V and Kudrnovsky, J and Turek, I and Herper, H and Szunyogh, L and Sommers, C",
	title = "{Aspects of magnetotunnelling drawn from ab-initio-type calculations}",
	journal = "{PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES}",
	year = "{2002}",
	volume = "{82}",
	number = "{9}",
	pages = "{1027-1045}",
	month = "{JUN}",
	abstract = "{Tunnelling between two semi-infinite ferromagnetic electrodes separated by vacuum is studied theoretically on an ab-initio level by using the fully relativistic spin-polarized screened Korringa-Kohn-Rostoker and the spin-polarized non-relativistic tight-binding linear muffin-tin orbital method. The Kubo-Greenwood equation is employed to calculate the non-local conductivity and layer-resolved sheet resistances; the transmission matrix formulation in turn is used to evaluate the conductance. We show that the dependence of sheet resistance on the imaginary part of the Fermi energy allows us to distinguish between the tunnelling and conductive regimes of electron transport. Our numerical studies of the system bcc Fe(100)/vacuum/bcc Fe(100) show quite dramatic variations in the electrostatic potential in the vacuum region and a gradual development of the tunnelling barrier with increasing thickness of the vacuum barrier. Varying the Madelung potential in the interior of the vacuum barrier allowed us to simulate spacers made of semiconducting or insulating material and to discuss the conditions for the presence of a magnetoresistance in such multilayers. As far as the thickness of the vacuum barrier is concerned the results obtained with the transmission matrix approach for fcc Co(001)/vacuum/fcc Co(001) show a similar tendency to those obtained within the Kubo-Greenwood equation for bcc Fe(100)/vacuum/bcc Fe(100); asymptotically, that is with increasing thickness of the vacuum barrier, the magnetoresistance tends to zero.}",
	publisher = "{TAYLOR \& FRANCIS LTD}",
	address = "{4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Weinberger, P (Reprint Author), Tech Univ Vienna, Ctr Computat Mat Sci, Getreidemarkt 9-134, A-1060 Vienna, Austria. Tech Univ Vienna, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Budapest Univ Technol \& Econ, Inst Phys, Dept Theoret Phys, H-1521 Budapest, Hungary. Univ Paris 11, Phys Solides Lab, F-91405 Orsay, France.}",
	doi = "{10.1080/13642810110117167}",
	issn = "{0141-8637}",
	keywords-plus = "{GIANT MAGNETORESISTANCE; MULTILAYER SYSTEMS; TRANSPORT; MAGNETOTRANSPORT; ALLOYS}",
	research-areas = "{Materials Science; Mechanics; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mechanics; Physics, Applied; Physics, Condensed Matter}",
	researcherid-numbers = "{Szunyogh, Laszlo/A-7956-2010 Herper, Heike/L-5660-2013 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Akerman JJ, 2001, APPL PHYS LETT, V79, P3104, DOI 10.1063/1.1413716. Blaas C, 1999, PHYS REV B, V60, P492, DOI 10.1103/PhysRevB.60.492. Blaas C, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.224408. BLAAS C, 2002, IN PRESS PHYS REV B. BUTLER WH, 1985, PHYS REV B, V31, P3260, DOI 10.1103/PhysRevB.31.3260. GREENWOOD DA, 1958, P PHYS SOC LOND, V71, P585, DOI 10.1088/0370-1328/71/4/306. KUBO R, 1957, J PHYS SOC JPN, V12, P570, DOI 10.1143/JPSJ.12.570. KUBO R, 1965, SOLID STATE PHYS, V17, P288. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Levy PM, 1994, SOLID STATE PHYS, V47, P367, DOI 10.1016/S0081-1947(08)60642-6. Mathon J, 1997, PHYS REV B, V56, P11810, DOI 10.1103/PhysRevB.56.11810. Nikolic B, 1999, PHYS REV B, V60, P3963, DOI 10.1103/PhysRevB.60.3963. Nikolic BK, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.165303. Rammer J., 1998, QUANTUM TRANSPORT TH. TUREK I, 2002, IN PRESS PHYS REV B. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Weinberger P, 1997, PHILOS MAG B, V75, P509, DOI 10.1080/13642819708202336. Weinberger P, 1996, J PHYS-CONDENS MAT, V8, P7677, DOI 10.1088/0953-8984/8/41/013. Weinberger P, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.184429. Weinberger P, 1997, INT J QUANTUM CHEM, V63, P165, DOI 10.1002/(SICI)1097-461X(1997)63:1<165::AID-QUA19>3.0.CO;2-B. Weinberger P, 2000, COMP MATER SCI, V17, P414, DOI 10.1016/S0927-0256(00)00063-X. WUNNICKE O, 2001, UNPUB PHYS REV LETT.}",
	number-of-cited-references = "{23}",
	times-cited = "{6}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop.}",
	doc-delivery-number = "{555HU}",
	unique-id = "{ISI:000175789300003}"
}

V Drchal, J Kudrnovsky, P Bruno, PH Dederichs, I Turek and P Weinberger. Electron transport in magnetic multilayers: Effect of disorder. PHYSICAL REVIEW B 65(21), 2002. BibTeX

@article{ ISI:000176765700072,
	author = "Drchal, V and Kudrnovsky, J and Bruno, P and Dederichs, PH and Turek, I and Weinberger, P",
	title = "{Electron transport in magnetic multilayers: Effect of disorder}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2002}",
	volume = "{65}",
	number = "{21}",
	month = "{JUN 1}",
	abstract = "{The magnetoresistance of metallic multilayers in the current-perpendicular-to-plane (CPP) geometry is studied theoretically on an ab initio level using the tight-binding linear muffin-tin orbital method. The applied potential parameters were determined self-consistently for a given alloy composition within the coherent potential approximation (CPA). Lateral supercells with random arrangements of atoms of two types are used to represent disorder connected with interface interdiffusion and with alloying in the spacer. We distinguish ballistic and diffusive parts of transport and study their dependence on the type and on the strength of disorder. The theoretical approach is illustrated on disordered systems derived from the fcc-based Co\textbackslash{}Cu\textbackslash{}Co(001) trilayers that serve as the reference system. We find quite a good agreement with experimental data and with other calculations. On the other hand, our results also show the limited validity of the two-current series-resistor model and that vertex corrections to the CPA applied to the CPP transport are of great importance.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Drchal, V (Reprint Author), Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Vienna Univ Technol, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle An Der Saale, Germany. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Charles Univ Prague, Dept Elect Struct, Prague 12116 2, Czech Republic.}",
	doi = "{10.1103/PhysRevB.65.214414}",
	article-number = "{214414}",
	issn = "{1098-0121}",
	keywords-plus = "{GIANT MAGNETORESISTANCE; PERPENDICULAR MAGNETOTRANSPORT; AG/CO MULTILAYERS; LAYERED SYSTEMS; RESISTIVITY; SCATTERING}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{BAIBICH MN, 1988, PHYS REV LETT, V61, P2472, DOI 10.1103/PhysRevLett.61.2472. BINASCH G, 1989, PHYS REV B, V39, P4828, DOI 10.1103/PhysRevB.39.4828. Bozec D, 2000, PHYS REV LETT, V85, P1314, DOI 10.1103/PhysRevLett.85.1314. Bruno P, 1999, J MAGN MAGN MATER, V198-99, P46, DOI 10.1016/S0304-8853(98)00614-3. Butler WH, 2000, J APPL PHYS, V87, P5173, DOI 10.1063/1.373285. BUTLER WH, 1993, MAGNETIC ULTRATHIN F, V313. JAMES F, 1990, COMPUT PHYS COMMUN, V60, P329, DOI 10.1016/0010-4655(90)90032-V. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. LEE SF, 1992, PHYS REV B, V46, P548, DOI 10.1103/PhysRevB.46.548. LEGVOLD S, 1974, PHYS REV B, V9, P2386, DOI 10.1103/PhysRevB.9.2386. Mathon J, 1997, PHYS REV B, V55, P14378, DOI 10.1103/PhysRevB.55.14378. PIPPARD AB, 1960, REP PROG PHYS, V23, P176, DOI 10.1088/0034-4885/23/1/304. PRATT WP, 1991, PHYS REV LETT, V66, P3060, DOI 10.1103/PhysRevLett.66.3060. Press W.H., 1992, NUMERICAL RECIPES FO. Schep KM, 1998, PHYS REV B, V57, P8907, DOI 10.1103/PhysRevB.57.8907. Shpiro A, 2001, PHYS REV B, V63. Tsymbal EY, 2000, PHYS REV B, V61, P506, DOI 10.1103/PhysRevB.61.506. Tsymbal EY, 2000, PHYS REV B, V62, pR3608, DOI 10.1103/PhysRevB.62.R3608. Turek I., 1997, ELECT STRUCTURE DISO. VERNES A, UNPUB. Weinberger P, 1997, PHILOS MAG B, V75, P509, DOI 10.1080/13642819708202336. Xia K, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.064407. Zahn P, 1998, PHYS REV LETT, V80, P4309, DOI 10.1103/PhysRevLett.80.4309. Zhang SF, 1998, PHYS REV B, V57, P5336, DOI 10.1103/PhysRevB.57.5336.}",
	number-of-cited-references = "{24}",
	times-cited = "{23}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{572GM}",
	unique-id = "{ISI:000176765700072}"
}

K Xia, PJ Kelly, GEW Bauer, A Brataas and I Turek. Spin torques in ferromagnetic/normal-metal structures. PHYSICAL REVIEW B 65(22), 2002. BibTeX

@article{ ISI:000176767100006,
	author = "Xia, K and Kelly, PJ and Bauer, GEW and Brataas, A and Turek, I",
	title = "{Spin torques in ferromagnetic/normal-metal structures}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2002}",
	volume = "{65}",
	number = "{22}",
	month = "{JUN 1}",
	abstract = "{Recent theories of spin-current-induced magnetization reversal are formulated in terms of a spin-mixing conductance G(mix). We evaluate G(mix) from first principles for a number of (dis)ordered interfaces between magnetic and nonmagnetic materials. We predict that the magnetization direction of a ferromagnetic insulator or of one side of a tunnel junction in a multiterminal device can be switched even though a negligible charge current is passed.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Xia, K (Reprint Author), Univ Twente, Fac Appl Phys, POB 217, NL-7500 AE Enschede, Netherlands. Univ Twente, Fac Appl Phys, NL-7500 AE Enschede, Netherlands. Univ Twente, MESA Res Inst, NL-7500 AE Enschede, Netherlands. Delft Univ Technol, Dept Appl Phys, NL-2628 CJ Delft, Netherlands. Delft Univ Technol, DIMES, NL-2628 CJ Delft, Netherlands. Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevB.65.220401}",
	article-number = "{220401}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{GIANT MAGNETORESISTANCE; MAGNETIC MULTILAYERS; CO/CU/CO PILLARS; TRANSPORT; SYSTEMS; EXCITATION; SCATTERING; JUNCTIONS; REVERSAL}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bauer, Gerrit/F-8273-2010 Kelly, Paul/G-4210-2010 Brataas, Arne/C-6178-2014 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Bauer, Gerrit/0000-0002-3615-8673 Kelly, Paul/0000-0001-9040-1868 Brataas, Arne/0000-0003-0867-6323 }",
	cited-references = "{Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. Ansermet JP, 1998, J PHYS-CONDENS MAT, V10, P6027, DOI 10.1088/0953-8984/10/27/005. BARTHELEMY A, 1999, HDB MAGNETIC MAT, V12, P47204. Bauer GEW, 2001, MAT SCI ENG B-SOLID, V84, P31, DOI 10.1016/S0921-5107(01)00553-0. Berger L, 1996, PHYS REV B, V54, P9353, DOI 10.1103/PhysRevB.54.9353. Brataas A, 2001, EUR PHYS J B, V22, P99, DOI 10.1007/PL00011139. Brataas A, 2000, PHYS REV LETT, V84, P2481, DOI 10.1103/PhysRevLett.84.2481. Datta S., 1995, ELECT TRANSPORT MESO. Gijs MAM, 1997, ADV PHYS, V46, P285, DOI 10.1080/00018739700101518. Grollier J, 2001, APPL PHYS LETT, V78, P3663, DOI 10.1063/1.1374230. Huertas-Hernando D, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.047003. Huertas-Hernando D, 2000, PHYS REV B, V62, P5700, DOI 10.1103/PhysRevB.62.5700. Inomata K, 2001, IEICE T ELECTRON, VE84C, P740. Katine JA, 2000, PHYS REV LETT, V84, P3149, DOI 10.1103/PhysRevLett.84.3149. MOODERA JS, 1995, PHYS REV LETT, V74, P3273, DOI 10.1103/PhysRevLett.74.3273. Myers EB, 1999, SCIENCE, V285, P867, DOI 10.1126/science.285.5429.867. Schep KM, 1997, PHYS REV B, V56, P10805, DOI 10.1103/PhysRevB.56.10805. SCHEP KM, 1995, PHYS REV LETT, V74, P586, DOI 10.1103/PhysRevLett.74.586. Slonczewski JC, 1996, J MAGN MAGN MATER, V159, pL1, DOI 10.1016/0304-8853(96)00062-5. Stiles MD, 2000, PHYS REV B, V61, P3200, DOI 10.1103/PhysRevB.61.3200. Sun JZ, 1999, J MAGN MAGN MATER, V202, P157, DOI 10.1016/S0304-8853(99)00289-9. Tsoi M, 1998, PHYS REV LETT, V80, P4281, DOI 10.1103/PhysRevLett.80.4281. Tsymbal EY, 2001, SOLID STATE PHYS, V56, P113, DOI 10.1016/S0081-1947(01)80019-9. Turek I., 1997, ELECT STRUCTURE DISO. Waintal X, 2000, PHYS REV B, V62, P12317, DOI 10.1103/PhysRevB.62.12317. Wegrowe JE, 1999, EUROPHYS LETT, V45, P626, DOI 10.1209/epl/i1999-00213-1. Xia K, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.064407. ZAHN P, 1995, PHYS REV LETT, V75, P2996, DOI 10.1103/PhysRevLett.75.2996.}",
	number-of-cited-references = "{28}",
	times-cited = "{157}}, Usage-Count-(Last-180-days) = {{4}",
	usage-count-since-2013 = "{27}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{572HA}",
	unique-id = "{ISI:000176767100006}"
}

J Kudrnovsky, V Drchal, I Turek and P Bruno. Exchange interactions in random magnetic overlayers. SURFACE SCIENCE 507:567-572, 2002. 20th European Conference on Surface Science, KRAKOW, POLAND, SEP 04-07, 2001. BibTeX

@article{ ISI:000176583700101,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Bruno, P",
	title = "{Exchange interactions in random magnetic overlayers}",
	journal = "{SURFACE SCIENCE}",
	year = "{2002}",
	volume = "{507}",
	pages = "{567-572}",
	month = "{JUN 1}",
	note = "{20th European Conference on Surface Science, KRAKOW, POLAND, SEP 04-07, 2001}",
	organization = "{Jagiellonian Univ; Fulbright Int Ctr Cent \& Eastern Europe; Elsevier Sci; AVC Sp}",
	abstract = "{We have determined the effective exchange interactions in the random magnetic overlayers on a nonmagnetic substrate by a mapping of the accurate ab initio total energies onto a classical two-dimensional Heisenberg Hamiltonian. The electronic structure is determined within the tight-binding linear muffin-tin orbital method combined with the surface Green function technique while the effect of a disorder is included using the coherent potential approximation. We employ both the magnetic-force and the vertex-cancellation theorems to evaluate the concentration dependence on the overlayer exchange interactions. The formalism is applied to the magnetic overlayers on the fcc-Cu(0 0 1) substrate. (C) 2002 Elsevier Science B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ, Dept Elect Struct, CZ-12116 Prague, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle Saale, Germany.}",
	doi = "{10.1016/S0039-6028(02)01310-9}",
	article-number = "{PII S0039-6028(02)01310-9}",
	issn = "{0039-6028}",
	keywords = "{density functional calculations; Green's function methods; alloys; magnetic films}",
	keywords-plus = "{SPIN DYNAMICS; FE; CO; NI; ALLOYS; CU}",
	research-areas = "{Chemistry; Physics}",
	web-of-science-categories = "{Chemistry, Physical; Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. BRUNO P, UNPUB. Halilov SV, 1998, PHYS REV B, V58, P293, DOI 10.1103/PhysRevB.58.293. Kudrnovsky J, 2000, LECT NOTES PHYS, V535, P313. LI C, 1990, J MAGN MAGN MATER, V83, P51, DOI 10.1016/0304-8853(90)90428-S. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. Pajda M, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.174402. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. TUREK I, 1994, PHYS REV B, V49, P3352, DOI 10.1103/PhysRevB.49.3352. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200.}",
	number-of-cited-references = "{14}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Surf. Sci.}",
	doc-delivery-number = "{569CV}",
	unique-id = "{ISI:000176583700101}"
}

I Turek, J Kudrnovsky, V Drchal, L Szunyogh and P Weinberger. Interatomic electron transport by semiempirical and ab initio tight-binding approaches. PHYSICAL REVIEW B 65(12), 2002. BibTeX

@article{ ISI:000174938800027,
	author = "Turek, I and Kudrnovsky, J and Drchal, V and Szunyogh, L and Weinberger, P",
	title = "{Interatomic electron transport by semiempirical and ab initio tight-binding approaches}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2002}",
	volume = "{65}",
	number = "{12}",
	month = "{MAR 15}",
	abstract = "{A unified approach to interatomic electron transport within Kubo linear-response theory is sketched that is applicable both in semiempirical (matrix-element-based) and ab initio (wave-function-based) tight-binding (TB) techniques. This approach is based on a systematic neglect of the electron motion inside the atomic (Wigner-Seitz) cells leading thus to velocity operators describing pure intersite hopping. This is achieved by using piecewise constant coordinates, i.e., coordinates that are constant inside the cells. The formalism is presented within the simple semiempirical TB method, the TB linear muffin-tin orbital (LMTO) method, and the screened Korringa-Kohn-Rostoker (KKR) method with emphasis on the formal analogy of the derived formulas. The results provide a justification of current assumptions used in semiempirical TB schemes, an assessment of properties of recent TB-LMTO approaches, and an alternative formulation of electron transport within the screened KKR method. The formalism is illustrated by a calculation of residual resistivity of substitutionally disordered fcc Ag-Pd alloys.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Tech Univ Budapest, Inst Phys, H-1521 Budapest, Hungary. Vienna Univ Technol, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Charles Univ Prague, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic.}",
	doi = "{10.1103/PhysRevB.65.125101}",
	article-number = "{125101}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{COHERENT-POTENTIAL APPROXIMATION; MAGNETIC MULTILAYERS; BAND-STRUCTURE; RANDOM ALLOYS; GIANT MAGNETORESISTANCE; DISORDERED ALLOYS; CONDUCTIVITY; RESISTIVITY; DENSITY; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Szunyogh, Laszlo/A-7956-2010 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{ANDERSEN OK, 1992, MATER RES SOC SYMP P, V253, P37. ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. ANDERSEN OK, 1986, PHYS REV B, V34, P5253, DOI 10.1103/PhysRevB.34.5253. Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. BALLENTINE LE, 1984, CAN J PHYS, V62, P692. BALLENTINE LE, 1986, J PHYS C SOLID STATE, V19, P981, DOI 10.1088/0022-3719/19/7/010. BANHART J, 1994, PHYS REV B, V50, P2104, DOI 10.1103/PhysRevB.50.2104. Banhart J, 1998, PHILOS MAG B, V77, P105, DOI 10.1080/014186398259888. Blaas C, 1999, PHYS REV B, V60, P492, DOI 10.1103/PhysRevB.60.492. BOSE SK, 1993, PHYS REV B, V48, P4265, DOI 10.1103/PhysRevB.48.4265. BULLET DW, 1980, SOLID STATE PHYS, V35, P129. BUTLER WH, 1985, PHYS REV B, V31, P3260, DOI 10.1103/PhysRevB.31.3260. COLES BR, 1962, PROC R SOC LON SER-A, V267, P139, DOI 10.1098/rspa.1962.0088. ELLIOTT RJ, 1974, REV MOD PHYS, V46, P465, DOI 10.1103/RevModPhys.46.465. Eschrig H., 1989, OPTIMIZED LCAO METHO. FISHER DS, 1981, PHYS REV B, V23, P6851, DOI 10.1103/PhysRevB.23.6851. GREENWOOD DA, 1958, P PHYS SOC LOND, V71, P585, DOI 10.1088/0370-1328/71/4/306. HASS KC, 1984, PHYS REV B, V29, P3697, DOI 10.1103/PhysRevB.29.3697. HEINE V, 1980, SOLID STATE PHYSICS, V35. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. ITOH H, 1995, PHYS REV B, V51, P342, DOI 10.1103/PhysRevB.51.342. Koepernik K, 1999, PHYS REV B, V59, P1743, DOI 10.1103/PhysRevB.59.1743. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. KOHN W, 1954, PHYS REV, V94, P1111, DOI 10.1103/PhysRev.94.1111. KORRINGA J, 1947, PHYSICA, V13, P392, DOI 10.1016/0031-8914(47)90013-X. KUBO R, 1957, J PHYS SOC JPN, V12, P570, DOI 10.1143/JPSJ.12.570. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Kudrnovsky J, 1999, CZECH J PHYS, V49, P1583, DOI 10.1023/A:1022871831961. Kudrnovsky J, 2000, SURF SCI, V454, P918, DOI 10.1016/S0039-6028(00)00069-8. KUDRNOVSKY J, 2000, PROPERTIES COMPLEX I, V2, P343. LEE PA, 1981, PHYS REV LETT, V47, P882, DOI 10.1103/PhysRevLett.47.882. LODDER A, 1994, PHYS REV B, V49, P10215, DOI 10.1103/PhysRevB.49.10215. MacLaren JM, 1999, PHYS REV B, V59, P5470, DOI 10.1103/PhysRevB.59.5470. Mathon J, 1997, PHYS REV B, V55, P14378, DOI 10.1103/PhysRevB.55.14378. Messiah A., 1961, QUANTUM MECH. SLATER JC, 1954, PHYS REV, V94, P1498, DOI 10.1103/PhysRev.94.1498. SWIHART JC, 1986, PHYS REV LETT, V57, P1181, DOI 10.1103/PhysRevLett.57.1181. SZUNYOGH L, 1994, PHYS REV B, V49, P2721, DOI 10.1103/PhysRevB.49.2721. Tanaka H, 1998, PHYS REV LETT, V81, P3727, DOI 10.1103/PhysRevLett.81.3727. Todorov TN, 1996, PHYS REV B, V54, P5801, DOI 10.1103/PhysRevB.54.5801. Turek I., 1997, ELECT STRUCTURE DISO. VELICKY B, 1969, PHYS REV, V184, P614, DOI 10.1103/PhysRev.184.614. VOSKO SH, 1980, CAN J PHYS, V58, P1200. Weinberger P, 1996, J PHYS-CONDENS MAT, V8, P7677, DOI 10.1088/0953-8984/8/41/013. Weinberger P, 1997, INT J QUANTUM CHEM, V63, P165, DOI 10.1002/(SICI)1097-461X(1997)63:1<165::AID-QUA19>3.0.CO;2-B. Xia K, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.064407. ZELLER R, 1995, PHYS REV B, V52, P8807, DOI 10.1103/PhysRevB.52.8807.}",
	number-of-cited-references = "{49}",
	times-cited = "{52}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{540QC}",
	unique-id = "{ISI:000174938800027}"
}

I Turek, J Kudrnovsky, V Drchal, P Weinberger and PH Dederichs. Theory of electron transport in FeRh-based natural magnetic multilayers. CZECHOSLOVAK JOURNAL OF PHYSICS 52(2):203-208, Únor 2002. 11th Czech and Slovak Conference on Magnetism (CSMAG 01), KOSICE, SLOVAKIA, AUG 20-23, 2001. BibTeX

@article{ ISI:000174955600023,
	author = "Turek, I and Kudrnovsky, J and Drchal, V and Weinberger, P and Dederichs, PH",
	title = "{Theory of electron transport in FeRh-based natural magnetic multilayers}",
	journal = "{CZECHOSLOVAK JOURNAL OF PHYSICS}",
	year = "{2002}",
	volume = "{52}",
	number = "{2}",
	pages = "{203-208}",
	month = "{FEB}",
	note = "{11th Czech and Slovak Conference on Magnetism (CSMAG 01), KOSICE, SLOVAKIA, AUG 20-23, 2001}",
	organization = "{PJ Safarik Univ, Fac Sci; Slovak Acad Sci, Inst Exptl Phys; Union Slovak Mathematicians \& Physicists; Slovak Phys Soc; Union Czech Mathematicians \& Physicists}",
	abstract = "{The electronic structure and the residual resistivity of random FeRh-based alloys in the CsCl structure are calculated from first principles. The calculations are performed for different spin structures using the tight-binding linear muffin-tin orbital method in the atomic sphere approximation. The effect of late transition-metal impurities (Pd, Rh) is taken into account by means of the coherent potential approximation generalized to inhomogeneous systems. It is shown that impurity scattering leads to giant magnetoresistance effects in qualitative agreement with experiment.}",
	publisher = "{INST PHYSICS ACAD SCI CZECH REPUBLIC}",
	address = "{NA SLOVANCE 2, PRAGUE 182 21, CZECH REPUBLIC}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Vienna Univ Technol, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Charles Univ Prague, Dept Elect Struct, Prague, Czech Republic.}",
	doi = "{10.1023/A:1014415611741}",
	issn = "{0011-4626}",
	keywords = "{giant magnetoresistance; spin-polarized transport; intermetallic compounds}",
	keywords-plus = "{METALLIC MULTILAYERS; MAGNETORESISTANCE; TRANSITION; ALLOY}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Bass J, 1999, J MAGN MAGN MATER, V200, P274, DOI 10.1016/S0304-8853(99)00316-9. BOSE SK, 1993, PHYS REV B, V48, P4265, DOI 10.1103/PhysRevB.48.4265. IBARRA MR, 1994, PHYS REV B, V50, P4196, DOI 10.1103/PhysRevB.50.4196. JEZIERSKI A, 1995, J MAGN MAGN MATER, V140, P81, DOI 10.1016/0304-8853(94)01146-X. KOUVEL JS, 1962, J APPL PHYS, V33, P1343, DOI 10.1063/1.1728721. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. MORUZZI VL, 1992, PHYS REV B, V46, P2864, DOI 10.1103/PhysRevB.46.2864. MORUZZI VL, 1992, PHYS REV B, V46, P14198, DOI 10.1103/PhysRevB.46.14198. Turek I., 1997, ELECT STRUCTURE DISO. YUASA S, 1995, J MAGN MAGN MATER, V140, P79, DOI 10.1016/0304-8853(94)01136-2.}",
	number-of-cited-references = "{11}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{Czech. J. Phys.}",
	doc-delivery-number = "{540XF}",
	unique-id = "{ISI:000174955600023}"
}

J Kudrnovsky, V Drchal, I Turek, M Pajda and P Bruno. Exchange interactions and Curie temperatures of 3D-and 2D-ferromagnets. CZECHOSLOVAK JOURNAL OF PHYSICS 52(2):215-218, Únor 2002. 11th Czech and Slovak Conference on Magnetism (CSMAG 01), KOSICE, SLOVAKIA, AUG 20-23, 2001. BibTeX

@article{ ISI:000174955600025,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Pajda, M and Bruno, P",
	title = "{Exchange interactions and Curie temperatures of 3D-and 2D-ferromagnets}",
	journal = "{CZECHOSLOVAK JOURNAL OF PHYSICS}",
	year = "{2002}",
	volume = "{52}",
	number = "{2}",
	pages = "{215-218}",
	month = "{FEB}",
	note = "{11th Czech and Slovak Conference on Magnetism (CSMAG 01), KOSICE, SLOVAKIA, AUG 20-23, 2001}",
	organization = "{PJ Safarik Univ, Fac Sci; Slovak Acad Sci, Inst Exptl Phys; Union Slovak Mathematicians \& Physicists; Slovak Phys Soc; Union Czech Mathematicians \& Physicists}",
	abstract = "{Effective exchange interactions in bulk ferromagnets as well as in magnetic overlayers on Cu(001) covered by a Cu-cap layer of varying thickness were determined from first principles by mapping of corresponding total energies onto the effective Heisenberg model in the framework of the adiabatic approximation and magnetic force theorem. The effective Heisenberg model is then used to determine spin-wave stiffness constants and Curie temperatures evaluated in the framework of the random-phase approximation. Calculations axe in a fair agreement with available experimental data for bulk ferromagnets and reproduce an oscillatory Curie temperature of magnetic overlayers as a function of Cu-cap thickness in a qualitative agreement with recent experiments.}",
	publisher = "{INST PHYSICS ACAD SCI CZECH REPUBLIC}",
	address = "{NA SLOVANCE 2, PRAGUE 182 21, CZECH REPUBLIC}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Max Planck Inst Microstruct Phys, D-06120 Halle An Der Saale, Germany. Charles Univ Prague, Dept Elect Struct, Prague, Czech Republic.}",
	doi = "{10.1023/A:1014419712650}",
	issn = "{0011-4626}",
	keywords = "{Curie temperature; spin-wave stiffness constant; first-principles calculations; bulk ferromagnet and magnetic multilayers}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748 }",
	cited-references = "{LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. MERMIN ND, 1966, PHYS REV LETT, V17, P1133, DOI 10.1103/PhysRevLett.17.1133. NEY A, 1999, PHYS REV B, V59, pR3928. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. PAJDA M, CONDMAT0007441. Turek I., 1997, ELECT STRUCTURE DISO. Vollmer R, 2000, PHYS REV B, V61, P1303, DOI 10.1103/PhysRevB.61.1303.}",
	number-of-cited-references = "{7}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{7}",
	journal-iso = "{Czech. J. Phys.}",
	doc-delivery-number = "{540XF}",
	unique-id = "{ISI:000174955600025}"
}

M Freyss, N Papanikolaou, V Bellini, R Zeller, PH Dederichs and I Turek. Transport properties and electronic structure of epitaxial tunnel junctions. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 240(1-3):117-120, Únor 2002. 4th International Symposium on Metallic Multilayers, AACHEN, GERMANY, JUN 24-29, 2001. BibTeX

@article{ ISI:000175813900031,
	author = "Freyss, M and Papanikolaou, N and Bellini, V and Zeller, R and Dederichs, PH and Turek, I",
	title = "{Transport properties and electronic structure of epitaxial tunnel junctions}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2002}",
	volume = "{240}",
	number = "{1-3}",
	pages = "{117-120}",
	month = "{FEB}",
	note = "{4th International Symposium on Metallic Multilayers, AACHEN, GERMANY, JUN 24-29, 2001}",
	organization = "{Deutsch Forsch Gemeinsch; Sonderforsch Bereich 491; Heraeus Stift; German Fed Minist Educ \& Res; European Phys Soc; European Phys Soc, E W Task Force; Ruhr Univ Bochurm; Aixtron AG; CrysTee GmbH; IBM Deutschland GmbH; Infineon Technologies; Lambertz GmbH; LOT Oriel Grp; Mateck GmbH; Pfeiffer Vacuum AG; Pink Vakuumtechnik GmbH; Quantum Design; Raith GmbH}",
	abstract = "{We present ab initio calculations for the electronic ground-state and transport properties of epitaxial Fe/semiconductor/Fe (0 0 1) tunnel junctions. The ground state properties are determined by the ab initio Screened KKR Green's function method and the transport properties by a Green's function formulation of the Landauer-Buttiker formalism. We focus on tunnel junctions with a semiconducting ZnSe barrier and compare them to results for junctions with Si and GaAs barriers. We comment on the presence of metal-induced gap states (MIGS) in the semiconductor, the spin polarization of which strongly depends on the nature of the barrier. We investigate furthermore the influence of one atomic layer at the interface of a non-magnetic metal (Cu, Ag, Al) and of a magnetic 3d transition metal. (C) 2002 Elsevier Science B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Freyss, M (Reprint Author), Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1016/S0304-8853(01)00730-2}",
	article-number = "{PII S0304-8853(01)00730-2}",
	issn = "{0304-8853}",
	keywords = "{electronic structure; interface magnetism; tunneling; transport properties}",
	keywords-plus = "{SPIN; INTERFACES; SURFACES; MATRIX}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	researcherid-numbers = "{Bellini, Valerio/J-4077-2012 Zeller, Rudolf/K-7094-2013 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{Bellini, Valerio/0000-0003-4520-7518 Zeller, Rudolf/0000-0002-9462-2649 }",
	cited-references = "{BARANGER HU, 1989, PHYS REV B, V40, P8169, DOI 10.1103/PhysRevB.40.8169. Butler WH, 1997, J APPL PHYS, V81, P5518, DOI 10.1063/1.364587. GARCIAMOLINER F, 1986, PROG SURF SCI, V21, P93, DOI 10.1016/0079-6816(86)90011-0. GODFRIN EM, 1991, J PHYS-CONDENS MAT, V3, P7843, DOI 10.1088/0953-8984/3/40/005. Kikuchi H, 2000, J APPL PHYS, V87, P6055, DOI 10.1063/1.372610. MacLaren JM, 1999, PHYS REV B, V59, P5470, DOI 10.1103/PhysRevB.59.5470. Mavropoulos P, 2000, PHYS REV LETT, V85, P1088, DOI 10.1103/PhysRevLett.85.1088. MOODERA JS, 1995, PHYS REV LETT, V74, P3273, DOI 10.1103/PhysRevLett.74.3273. SZUNYOGH L, 1994, PHYS REV B, V49, P2721, DOI 10.1103/PhysRevB.49.2721. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WU SY, 1993, PHYS REV B, V48, P14826, DOI 10.1103/PhysRevB.48.14826.}",
	number-of-cited-references = "{11}",
	times-cited = "{5}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{555VL}",
	unique-id = "{ISI:000175813900031}"
}

I Turek, J Kudrnovsky, V Drchal, P Weinberger and PH Dederichs. Ab initio theory of transport in FeRh-based natural magnetic multilayers. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 240(1-3):162-164, Únor 2002. 4th International Symposium on Metallic Multilayers, AACHEN, GERMANY, JUN 24-29, 2001. BibTeX

@article{ ISI:000175813900045,
	author = "Turek, I and Kudrnovsky, J and Drchal, V and Weinberger, P and Dederichs, PH",
	title = "{Ab initio theory of transport in FeRh-based natural magnetic multilayers}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2002}",
	volume = "{240}",
	number = "{1-3}",
	pages = "{162-164}",
	month = "{FEB}",
	note = "{4th International Symposium on Metallic Multilayers, AACHEN, GERMANY, JUN 24-29, 2001}",
	organization = "{Deutsch Forsch Gemeinsch; Sonderforsch Bereich 491; Heraeus Stift; German Fed Minist Educ \& Res; European Phys Soc; European Phys Soc, E W Task Force; Ruhr Univ Bochurm; Aixtron AG; CrysTee GmbH; IBM Deutschland GmbH; Infineon Technologies; Lambertz GmbH; LOT Oriel Grp; Mateck GmbH; Pfeiffer Vacuum AG; Pink Vakuumtechnik GmbH; Quantum Design; Raith GmbH}",
	abstract = "{The electronic structure and the residual resistivity of random FeRh-based alloys in the CsCl structure are calculated for different spin configurations using the tight-binding linear muffin-tin orbital method. The effect of substitutional impurities (Pd, Rh) is described by means of the coherent potential approximation. It is shown that impurity scattering leads to giant magnetoresistance, effects in qualitative agreement with experiment. (C) 2002 Elsevier Science B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republ, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Tech Univ Vienna, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany.}",
	doi = "{10.1016/S0304-8853(01)00743-0}",
	article-number = "{PII S0304-8853(01)00743-0}",
	issn = "{0304-8853}",
	keywords = "{magnetoresistance giant; impurity effects; disorder alloys; intermetallic compounds}",
	keywords-plus = "{METALLIC MULTILAYERS; MAGNETORESISTANCE; TRANSITION}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Bass J, 1999, J MAGN MAGN MATER, V200, P274, DOI 10.1016/S0304-8853(99)00316-9. BOSE SK, 1993, PHYS REV B, V48, P4265, DOI 10.1103/PhysRevB.48.4265. IBARRA MR, 1994, PHYS REV B, V50, P4196, DOI 10.1103/PhysRevB.50.4196. JEZIERSKI A, 1995, J MAGN MAGN MATER, V140, P81, DOI 10.1016/0304-8853(94)01146-X. KOUVEL JS, 1962, J APPL PHYS, V33, P1343, DOI 10.1063/1.1728721. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. MORUZZI VL, 1992, PHYS REV B, V46, P2864, DOI 10.1103/PhysRevB.46.2864. MORUZZI VL, 1992, PHYS REV B, V46, P14198, DOI 10.1103/PhysRevB.46.14198. Turek I., 1997, ELECT STRUCTURE DISO. YUASA S, 1995, J MAGN MAGN MATER, V140, P79, DOI 10.1016/0304-8853(94)01136-2.}",
	number-of-cited-references = "{11}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{6}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{555VL}",
	unique-id = "{ISI:000175813900045}"
}

J Kudrnovsky, V Drchal, I Turek, PH Dederichs, P Weinberger and P Bruno. Ab initio theory of perpendicular transport in layered magnetic systems. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 240(1-3):177-179, Únor 2002. 4th International Symposium on Metallic Multilayers, AACHEN, GERMANY, JUN 24-29, 2001. BibTeX

@article{ ISI:000175813900050,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Dederichs, PH and Weinberger, P and Bruno, P",
	title = "{Ab initio theory of perpendicular transport in layered magnetic systems}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2002}",
	volume = "{240}",
	number = "{1-3}",
	pages = "{177-179}",
	month = "{FEB}",
	note = "{4th International Symposium on Metallic Multilayers, AACHEN, GERMANY, JUN 24-29, 2001}",
	organization = "{Deutsch Forsch Gemeinsch; Sonderforsch Bereich 491; Heraeus Stift; German Fed Minist Educ \& Res; European Phys Soc; European Phys Soc, E W Task Force; Ruhr Univ Bochum; Aixtron AG; CrysTee GmbH; IBM Deutschland GmbH; Infineon Technologies; Lambertz GmbH; LOT Oriel Grp; Mateck GmbH; Pfeiffer Vacuum AG; Pink Vakuumtechnik GmbH; Quantum Design; Raith GmbH}",
	abstract = "{The spin-polarized electron conductance perpendicular to layers of a random magnetic multilayer is evaluated from first principles. We employ the Landauer formulation in the framework of the tight-binding linear muffin-tin orbital approach and the surface Green-function technique. The disorder in the bulk and at interfaces is included in terms of lateral supercells confined to individual atomic layers. The application is made to interleave and separate multilayers with a different order of magnetic and non-magnetic layers with generally non-collinear alignments of layer magnetizations. (C) 2002 Elsevier Science B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republic, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle An Der Saale, Germany. AS CR, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ Prague, Dept Elect Struct, CZ-12116 Prague, Czech Republic. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Vienna Univ Technol, CMS, A-1060 Vienna, Austria.}",
	doi = "{10.1016/S0304-8853(01)00748-X}",
	article-number = "{PII S0304-8853(01)00748-X}",
	issn = "{0304-8853}",
	keywords = "{magnetoresistance - theory; ferromagnetic multilayers; disorder - alloys; electronic structure}",
	keywords-plus = "{METALLIC MULTILAYERS; MAGNETORESISTANCE}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Bass J, 1999, J MAGN MAGN MATER, V200, P274, DOI 10.1016/S0304-8853(99)00316-9. BASS J, 1982, LANDOLT BORNSTEIN, V3, P177. Bozec D, 2000, PHYS REV LETT, V85, P1314, DOI 10.1103/PhysRevLett.85.1314. Gijs MAM, 1997, ADV PHYS, V46, P285, DOI 10.1080/00018739700101518. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. Schep KM, 1998, PHYS REV B, V57, P8907, DOI 10.1103/PhysRevB.57.8907. Turek I., 1997, ELECT STRUCTURE DISO. VALET T, 1993, PHYS REV B, V48, P7099, DOI 10.1103/PhysRevB.48.7099. VERNES A, UNPUB. Xia K, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.064407.}",
	number-of-cited-references = "{12}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{555VL}",
	unique-id = "{ISI:000175813900050}"
}

P Bruno, J Kudrnovsky, M Pajda, V Drchal and I Turek. Oscillatory Curie temperature of 2D-ferromagnets. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 240(1-3):346-348, Únor 2002. 4th International Symposium on Metallic Multilayers, AACHEN, GERMANY, JUN 24-29, 2001. BibTeX

@article{ ISI:000175813900102,
	author = "Bruno, P and Kudrnovsky, J and Pajda, M and Drchal, V and Turek, I",
	title = "{Oscillatory Curie temperature of 2D-ferromagnets}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{2002}",
	volume = "{240}",
	number = "{1-3}",
	pages = "{346-348}",
	month = "{FEB}",
	note = "{4th International Symposium on Metallic Multilayers, AACHEN, GERMANY, JUN 24-29, 2001}",
	organization = "{Deutsch Forsch Gemeinsch; Sonderforsch Bereich 491; Heraeus Stift; German Fed Minist Educ \& Res; European Phys Soc; European Phys Soc, E W Task Force; Ruhr Univ Bochurm; Aixtron AG; CrysTee GmbH; IBM Deutschland GmbH; Infineon Technologies; Lambertz GmbH; LOT Oriel Grp; Mateck GmbH; Pfeiffer Vacuum AG; Pink Vakuumtechnik GmbH; Quantum Design; Raith GmbH}",
	abstract = "{The effective exchange interactions of the magnetic overlayer Fe,/Cu(0 0 1) covered by a Cu-cap layer of varying thickness were calculated in real space from first principles. The effective two-dimensional Heisenberg Hamiltonian was constructed and used to estimate spin-wave stiffness constants and overlayer Curie temperatures within the random-phase approximation. Oscillatory behavior of the overlayer Curie temperature, spin-wave stiffness, and magnetic moment as a function of the cap-layer thickness was found and explained. (C) 20021 Elsevier Science B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Slovance 2, CZ-18221 Prague 2, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 2, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle Saale, Germany. AS CR, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ, Dept Elect Struct, CZ-12116 Prague, Czech Republic.}",
	doi = "{10.1016/S0304-8853(01)00796-X}",
	article-number = "{PII S0304-8853(01)00796-X}",
	issn = "{0304-8853}",
	keywords = "{Curie temperature; Heisenberg model; spin waves - two dimensional; multilayers - metallic}",
	keywords-plus = "{SPIN DYNAMICS; ALLOYS}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. BRUNO P, 1992, MATER RES SOC SYMP P, V231, P299. Halilov SV, 1998, PHYS REV B, V58, P293, DOI 10.1103/PhysRevB.58.293. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. MERMIN ND, 1966, PHYS REV LETT, V17, P1133, DOI 10.1103/PhysRevLett.17.1133. NEY A, 1999, PHYS REV B, V59, pR3928. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. PAJDA M, IN PRESS PHYS REV B. STAUNTON JB, 1992, PHYS REV LETT, V69, P371, DOI 10.1103/PhysRevLett.69.371. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. Tyablikov S. V., 1967, METHODS QUANTUM THEO. Vollmer R, 2000, PHYS REV B, V61, P1303, DOI 10.1103/PhysRevB.61.1303. WANG CS, 1982, PHYS REV B, V25, P5766, DOI 10.1103/PhysRevB.25.5766.}",
	number-of-cited-references = "{14}",
	times-cited = "{4}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{555VL}",
	unique-id = "{ISI:000175813900102}"
}

S Pick, I Turek and H Dreysse. On magnetically dead layers at Nb-Co interface. SOLID STATE COMMUNICATIONS 124(1-2):21-23, 2002. BibTeX

@article{ ISI:000178694900005,
	author = "Pick, S and Turek, I and Dreysse, H",
	title = "{On magnetically dead layers at Nb-Co interface}",
	journal = "{SOLID STATE COMMUNICATIONS}",
	year = "{2002}",
	volume = "{124}",
	number = "{1-2}",
	pages = "{21-23}",
	abstract = "{Recent experiments indicate the presence of magnetically dead NbCo alloy layers at the Nb-Co interface. By using the tight-binding linear muffin-tin orbital method in the atomic-sphere approximation, we consider a number of one- and two-layer Nb-Co interfaces formed by disordered or ordered NbCo alloys. The interfaces separate fcc Co(111) crystal surface from a Nb monolayer. The presence of Nb atoms in Co neighborhood always leads to some reduction in magnetization. The crucial parameter controlling a Co-atom magnetization is the number of its nearest Nb neighbors. If this number is greater than about 5, the Co magnetic moment is essentially quenched, in agreement with experiment. (C) 2002 Elsevier Science Ltd. All rights reserved.}",
	publisher = "{PERGAMON-ELSEVIER SCIENCE LTD}",
	address = "{THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Pick, S (Reprint Author), Acad Sci Czech Republ, J Heyrovsky Inst Phys Chem, Dolejskova 3, CZ-18223 Prague 8, Czech Republic. Acad Sci Czech Republ, J Heyrovsky Inst Phys Chem, CZ-18223 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic. CNRS, UMR 7504, Inst Phys \& Chim Mat Strasbourg, F-67037 Strasbourg, France.}",
	doi = "{10.1016/S0038-1098(02)00455-6}",
	article-number = "{PII S0038-1098(02)00455-6}",
	issn = "{0038-1098}",
	keywords = "{magnetic films and multilayers; surfaces and interfaces; magnetically dead layers}",
	keywords-plus = "{SUPERCONDUCTIVITY}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Ankudinov AL, 1998, PHYS REV B, V58, P7565, DOI 10.1103/PhysRevB.58.7565. FABRICIUS G, 1993, J PHYS-CONDENS MAT, V5, pA197, DOI 10.1088/0953-8984/5/33A/059. Garifullin IA, 2002, J MAGN MAGN MATER, V240, P571, DOI 10.1016/S0304-8853(01)00849-6. Jamet M, 2000, PHYS REV B, V62, P493, DOI 10.1103/PhysRevB.62.493. JAMET M, THESIS U C BERNARD L. KRIER G, 1995, TBLMTOASA PROGRAMM V. Muhge T, 1997, PHYS REV B, V55, P8945, DOI 10.1103/PhysRevB.55.8945. Muhge T, 1998, PHYS REV B, V57, P5071, DOI 10.1103/PhysRevB.57.5071. Obi Y, 1999, PHYSICA C, V317, P149, DOI 10.1016/S0921-4534(99)00055-6. Pick S, 2002, J MAGN MAGN MATER, V240, P337, DOI 10.1016/S0304-8853(01)00792-2. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{12}",
	times-cited = "{10}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Solid State Commun.}",
	doc-delivery-number = "{605UF}",
	unique-id = "{ISI:000178694900005}"
}

M Pajda, J Kudrnovsky, I Turek, V Drchal and P Bruno. Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni. PHYSICAL REVIEW B 64(17), 2001. BibTeX

@article{ ISI:000172027600050,
	author = "Pajda, M and Kudrnovsky, J and Turek, I and Drchal, V and Bruno, P",
	title = "{Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2001}",
	volume = "{64}",
	number = "{17}",
	month = "{NOV 1}",
	abstract = "{We have calculated Heisenberg exchange parameters for bcc Fe, fcc Co, and fcc Ni using the nonrelativistic spin-polarized Green-function technique within the tight-binding linear muffin-tin orbital method and by employing the magnetic force theorem to calculate total energy changes associated with a local rotation of magnetization directions, We have also determined spin-wave stiffness constants and found the dispersion curves for metals in question employing the Fourier transform of calculated Heisenberg exchange parameters. Detailed analysis of convergence properties of the underlying lattice sums was carried out and a regularization procedure for calculation of the spin-wave stiffness constant was suggested. Curie temperatures were calculated both in the mean-field approximation and within the Green-function random-phase approximation. The latter results were found to be in a better agreement with available experimental data.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Pajda, M (Reprint Author), Max Planck Inst Mikrostrukturphys, Weinberg 2, D-06120 Halle Saale, Germany. Max Planck Inst Mikrostrukturphys, D-06120 Halle Saale, Germany. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Charles Univ, Dept Elect Struct, CZ-12116 Prague 2, Czech Republic.}",
	doi = "{10.1103/PhysRevB.64.174402}",
	article-number = "{174402}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{DENSITY-FUNCTIONAL THEORY; FIRST-PRINCIPLES; FERROMAGNETIC METALS; MAGNETIC EXCITATIONS; NEUTRON-SCATTERING; DYNAMICS; IRON; NICKEL; IMPURITIES; CRYSTALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. Antropov VP, 1996, PHYS REV B, V54, P1019, DOI 10.1103/PhysRevB.54.1019. Antropov VP, 1997, PHYSICA B, V237, P336, DOI 10.1016/S0921-4526(97)00203-2. Brown RH, 1999, J APPL PHYS, V85, P4830, DOI 10.1063/1.370035. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. CALLEN HB, 1963, PHYS REV, V130, P890, DOI 10.1103/PhysRev.130.890. DEDERICHS PH, 1984, PHYS REV LETT, V53, P2512, DOI 10.1103/PhysRevLett.53.2512. Frota-Pessoa S, 2000, PHYS REV B, V62, P5293, DOI 10.1103/PhysRevB.62.5293. Grotheer O, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.100401. HAAS KS, 1984, PHYS REV B, V29, P3697. HAAS KS, 1984, PHYS REV B, V58, P1200. Halilov SV, 1998, PHYS REV B, V58, P293, DOI 10.1103/PhysRevB.58.293. HUBBARD J, 1981, PHYS REV B, V23, P5974, DOI 10.1103/PhysRevB.23.5974. HUBBARD J, 1979, PHYS REV B, V20, P4584, DOI 10.1103/PhysRevB.20.4584. HUBBARD J, 1979, PHYS REV B, V19, P2626, DOI 10.1103/PhysRevB.19.2626. Ivanov O, 1999, J APPL PHYS, V85, P4821, DOI 10.1063/1.370493. Kudrnovsky J, 2000, LECT NOTES PHYS, V535, P313. LIECHTENSTEIN AI, 1984, J PHYS F MET PHYS, V14, pL125, DOI 10.1088/0305-4608/14/7/007. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. LOONG CK, 1984, J APPL PHYS, V55, P1895, DOI 10.1063/1.333511. LTAHIRKHELI RA, 1963, PHYS REV, V132, P689. LYNN JW, 1975, PHYS REV B, V11, P2624, DOI 10.1103/PhysRevB.11.2624. MacLaren JM, 1999, J APPL PHYS, V85, P4833, DOI 10.1063/1.370036. MOOK HA, 1985, PHYS REV LETT, V54, P227, DOI 10.1103/PhysRevLett.54.227. MOOK HA, 1973, PHYS REV LETT, V30, P556, DOI 10.1103/PhysRevLett.30.556. Niu Q, 1999, PHYS REV LETT, V83, P207, DOI 10.1103/PhysRevLett.83.207. Niu Q, 1998, PHYS REV LETT, V80, P2205, DOI 10.1103/PhysRevLett.80.2205. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. Pajda M, 2000, PHYS REV LETT, V85, P5424, DOI 10.1103/PhysRevLett.85.5424. PAUTHENET R, 1982, J APPL PHYS, V53, P8187, DOI 10.1063/1.330287. PAUTHENET R, 1982, J APPL PHYS, V53, P2029, DOI 10.1063/1.330694. Sakuma A, 1999, J PHYS SOC JPN, V68, P620, DOI 10.1143/JPSJ.68.620. SANDRATSKII LM, 1991, J PHYS-CONDENS MAT, V3, P8565, DOI 10.1088/0953-8984/3/44/004. SHIRANE G, 1968, J APPL PHYS, V39, P383, DOI 10.1063/1.2163453. Spisak D, 1997, J MAGN MAGN MATER, V168, P257, DOI 10.1016/S0304-8853(96)00700-7. STAUNTON JB, 1992, PHYS REV LETT, V69, P371, DOI 10.1103/PhysRevLett.69.371. TAHIRKHELI RA, 1962, PHYS REV, V127, P88, DOI 10.1103/PhysRev.127.88. TAHIRKHELI RA, 1964, PHYS REV, V135, P1096. Turek I, 2000, LECT NOTES PHYS, V535, P349. Tyablikov S. V., 1967, METHODS QUANTUM THEO. Ujfalussy B, 1999, J APPL PHYS, V85, P4824, DOI 10.1063/1.370494. van Schilfgaarde M, 1999, J APPL PHYS, V85, P4827, DOI 10.1063/1.370495. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WANG CS, 1982, PHYS REV B, V25, P5766, DOI 10.1103/PhysRevB.25.5766. YOU MV, 1980, PHYS REV LETT, V44, P1282, DOI 10.1103/PhysRevLett.44.1282.}",
	number-of-cited-references = "{46}",
	times-cited = "{247}}, Usage-Count-(Last-180-days) = {{7}",
	usage-count-since-2013 = "{62}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{490AV}",
	unique-id = "{ISI:000172027600050}"
}

J Kudrnovsky, V Drchal, I Turek, P Bruno and P Weinberger. Ab initio theory of the interlayer exchange coupling in random metallic systems. JOURNAL OF PHYSICS-CONDENSED MATTER 13(38):8539-8549, 2001. Meeting of the Eletronic Structure and Alloy Phase Stability, NEW ORLEANS, LOUISIANA, FEB, 2001. BibTeX

@article{ ISI:000171631900002,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Bruno, P and Weinberger, P",
	title = "{Ab initio theory of the interlayer exchange coupling in random metallic systems}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{2001}",
	volume = "{13}",
	number = "{38}",
	pages = "{8539-8549}",
	month = "{SEP 24}",
	note = "{Meeting of the Eletronic Structure and Alloy Phase Stability, NEW ORLEANS, LOUISIANA, FEB, 2001}",
	abstract = "{We present an ab initio formulation of the interlayer exchange coupling (IEC) between two magnetic slabs embedded in a non-magnetic spacer wherein the spacer and the magnetic slabs as well as their interfaces may be random. This approach is based on the spin-polarized surface Green function technique within the tight-binding, linear muffin-tin orbital method, the Lloyd formulation of the EEC, and the coherent potential approximation using the vertex-cancellation theorem. The periods, amplitudes, and phases are studied in terms of discrete Fourier transformations. Numerical results illustrating the theory are presented.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle Saale, Germany. Vienna Tech Univ, Ctr Computat Mat Sci, A-1060 Vienna, Austria.}",
	doi = "{10.1088/0953-8984/13/38/301}",
	issn = "{0953-8984}",
	keywords-plus = "{MAGNETIC MULTILAYERS; FE; CU; DEPENDENCE; MAGNETORESISTANCE; SPACERS; ALLOYS; LAYERS; PHASE; FCC}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{BOBO JF, 1994, J PHYS-CONDENS MAT, V6, P2689, DOI 10.1088/0953-8984/6/14/007. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. COEHOORN R, 1993, J MAGN MAGN MATER, V126, P390, DOI 10.1016/0304-8853(93)90634-E. Drchal V, 1996, PHYS REV B, V53, P15036, DOI 10.1103/PhysRevB.53.15036. Drchal V, 1999, PHYS REV B, V60, P9588, DOI 10.1103/PhysRevB.60.9588. DUCASTELLE F, 1975, J PHYS C SOLID STATE, V8, P3297, DOI 10.1088/0022-3719/8/20/008. JOHNSON MT, 1995, PHYS REV LETT, V75, P4686, DOI 10.1103/PhysRevLett.75.4686. KROMPIEWSKI S, 1993, J MAGN MAGN MATER, V121, P238, DOI 10.1016/0304-8853(93)91195-D. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. Kudrnovsky J, 1996, PHYS REV B, V53, P5125, DOI 10.1103/PhysRevB.53.5125. Kudrnovsky J, 1996, PHYS REV B, V54, pR3738. Kudrnovsky J, 2000, LECT NOTES PHYS, V535, P313. Kudrnovsky J, 1997, PHYS REV LETT, V78, P358, DOI 10.1103/PhysRevLett.78.358. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. Lathiotakis NN, 1999, PHYS REV LETT, V83, P215, DOI 10.1103/PhysRevLett.83.215. Lathiotakis NN, 2000, PHYS REV B, V61, P6854, DOI 10.1103/PhysRevB.61.6854. LEE BC, 1995, PHYS REV B, V52, P3499, DOI 10.1103/PhysRevB.52.3499. LENG Q, 1993, J MAGN MAGN MATER, V126, P367, DOI 10.1016/0304-8853(93)90629-G. MIRBT S, 1993, SOLID STATE COMMUN, V88, P331, DOI 10.1016/0038-1098(93)90519-S. OKUNO SN, 1993, PHYS REV LETT, V70, P1711, DOI 10.1103/PhysRevLett.70.1711. PARKIN SSP, 1993, EUROPHYS LETT, V24, P71, DOI 10.1209/0295-5075/24/1/012. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923, DOI 10.1103/PhysRevLett.71.1923. WANG Y, 1990, PHYS REV LETT, V65, P2732, DOI 10.1103/PhysRevLett.65.2732.}",
	number-of-cited-references = "{24}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{483JH}",
	unique-id = "{ISI:000171631900002}"
}

S Khmelevskyi, I Turek and P Mohn. Formation of a weak ferromagnetic state in Y(Co1-xAlx)(2) compounds: a coherent potential approximation study. JOURNAL OF PHYSICS-CONDENSED MATTER 13(36):8405-8414, 2001. BibTeX

@article{ ISI:000171574500015,
	author = "Khmelevskyi, S and Turek, I and Mohn, P",
	title = "{Formation of a weak ferromagnetic state in Y(Co1-xAlx)(2) compounds: a coherent potential approximation study}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{2001}",
	volume = "{13}",
	number = "{36}",
	pages = "{8405-8414}",
	month = "{SEP 10}",
	abstract = "{The band structure of substitutionally disordered Y(Co1-xAlx)(2) has been calculated for various concentrations in the range 0 less than or equal to x less than or equal to 0.25 employing the coherent potential approximation embodied in an all-electron tight-binding linear muffin-tin orbital method. On the basis of the results, we provide a new explanation for the formation of weak ferromagnetic moments in these compounds. The discussion of the non-spin-polarized calculated densities of states is supported by direct evidence of the weak ferromagnetic states for certain lattice constants and Al concentrations. The roles of the disorder and the volume effects are discussed.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Khmelevskyi, S (Reprint Author), Vienna Univ Technol, Ctr Computat Mat Sci, Vienna, Austria. Vienna Univ Technol, Ctr Computat Mat Sci, Vienna, Austria. Charles Univ, Dept Elect Struct, Prague, Czech Republic.}",
	doi = "{10.1088/0953-8984/13/36/313}",
	issn = "{0953-8984}",
	keywords-plus = "{ELECTRONIC-STRUCTURE; METAMAGNETISM}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 }",
	orcid-numbers = "{Khmelevskyi, Sergii/0000-0001-5630-7835}",
	cited-references = "{ALEKSANDRYAN VV, 1985, ZH EKSP TEOR FIZ, V62, P153. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. AOKI M, 1992, PHYSICA B, V177, P259, DOI 10.1016/0921-4526(92)90108-5. AOKI M, 1989, J MAGN MAGN MATER, V78, P377, DOI 10.1016/0304-8853(89)90209-6. ARMITAGE JGM, 1990, J PHYS-CONDENS MAT, V2, P8779, DOI 10.1088/0953-8984/2/44/007. Burzo E., 1972, International Journal of Magnetism, V3, P161. DUC NH, 1993, J MAGN MAGN MATER, V125, P323, DOI 10.1016/0304-8853(93)90106-C. Duc N H, 1999, HDB MAGNETIC MAT, V12. Duc N. H., 1999, HDB PHYS CHEM RARE E, V26. GOTO T, 1989, SOLID STATE COMMUN, V72, P945, DOI 10.1016/0038-1098(89)90433-X. HASS KC, 1984, PHYS REV B, V29, P3697, DOI 10.1103/PhysRevB.29.3697. PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048. SAKAKIBARA T, 1990, J PHYS-CONDENS MAT, V2, P3381, DOI 10.1088/0953-8984/2/14/022. SCHWARZ K, 1984, J PHYS F MET PHYS, V14, pL129, DOI 10.1088/0305-4608/14/7/008. Turek I., 1997, ELECT STRUCTURE DISO. YAMADA H, 1992, J MAGN MAGN MATER, V104, P1967, DOI 10.1016/0304-8853(92)91626-5. YOSHIMURA K, 1985, SOLID STATE COMMUN, V56, P767, DOI 10.1016/0038-1098(85)90305-9. Yosida K., 1996, SPRINGER SERIES SOLI.}",
	number-of-cited-references = "{18}",
	times-cited = "{18}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{482KC}",
	unique-id = "{ISI:000171574500015}"
}

J Kudrnovsky, V Drchal, I Turek, P Streda and P Bruno. Magnetoresistance in domain walls: effect of randomness. SURFACE SCIENCE 482(2):1107-1112, 2001. 19th European Conference on Surface Science (ECOSS-19), MADRID, SPAIN, SEP 05-08, 2000. BibTeX

@article{ ISI:000170302200058,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Streda, P and Bruno, P",
	title = "{Magnetoresistance in domain walls: effect of randomness}",
	journal = "{SURFACE SCIENCE}",
	year = "{2001}",
	volume = "{482}",
	number = "{2}",
	pages = "{1107-1112}",
	month = "{JUN 20}",
	note = "{19th European Conference on Surface Science (ECOSS-19), MADRID, SPAIN, SEP 05-08, 2000}",
	organization = "{Univ Autonoma Madrid, Dept Fis Mat Condensada; European Phys Soc, Surface \& Interface Div; Int Union Vacuum Sci, Techni \& Applicat, Surface Div}",
	abstract = "{The Landauer-Buttiker approach formulated in the framework of the spin-polarized surface Green function technique and the tight-binding linear muffin-tin orbital method is used to study the magnetotransport in the presence of the domain walls (DW) from first principles. Our approach allows to treat both the ballistic and the diffusive regime of the DW transport on equal footing. The effect of disorder is included in terms of lateral supercells confined to individual atomic layers within a DW. In this paper we apply the method to fce(0 0 1)-based DW of elemental ferromagnets. (C) 2001 Published by Elsevier Science B.V.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republ, Inst Phys, Prague 6, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle Saale, Germany.}",
	doi = "{10.1016/S0039-6028(01)00801-9}",
	issn = "{0039-6028}",
	keywords = "{density functional calculations; Green's function methods; conductivity; metal- metal magnetic heterostructures}",
	keywords-plus = "{TRANSPORT; SCATTERING; RESISTIVITY; FILMS}",
	research-areas = "{Chemistry; Physics}",
	web-of-science-categories = "{Chemistry, Physical; Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 Streda, Pavel/G-8924-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Drchal, Vaclav/0000-0002-6628-7417 }",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Brataas A, 1999, PHYS REV B, V60, P3406, DOI 10.1103/PhysRevB.60.3406. CABRERA GG, 1974, PHYS STATUS SOLIDI B, V62, P217, DOI 10.1002/pssb.2220620122. Gregg JF, 1996, PHYS REV LETT, V77, P1580, DOI 10.1103/PhysRevLett.77.1580. Jonkers PAE, 1999, PHYS REV B, V60, P15970, DOI 10.1103/PhysRevB.60.15970. Kudrnovsky J, 2000, PHYS REV B, V62, P15084, DOI 10.1103/PhysRevB.62.15084. Levy PM, 1997, PHYS REV LETT, V79, P5110, DOI 10.1103/PhysRevLett.79.5110. Levy PM, 1994, SOLID STATE PHYS, V47, P367, DOI 10.1016/S0081-1947(08)60642-6. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. Otani Y, 1998, IEEE T MAGN, V34, P1096, DOI 10.1109/20.706372. Rudiger U, 1999, PHYS REV B, V59, P11914, DOI 10.1103/PhysRevB.59.11914. Rudiger U., 1998, PHYS REV LETT, V80, P5639. Tatara G, 1999, PHYS REV LETT, V83, P2030, DOI 10.1103/PhysRevLett.83.2030. Turek I., 1997, ELECT STRUCTURE DISO. van Gorkom RP, 1999, PHYS REV LETT, V83, P4401, DOI 10.1103/PhysRevLett.83.4401. van Hoof JBAN, 1999, PHYS REV B, V59, P138, DOI 10.1103/PhysRevB.59.138.}",
	number-of-cited-references = "{17}",
	times-cited = "{13}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Surf. Sci.}",
	doc-delivery-number = "{460HM}",
	unique-id = "{ISI:000170302200058}"
}

K Xia, PJ Kelly, GEW Bauer, I Turek, J Kudrnovsky and V Drchal. Interface resistance of disordered magnetic multilayers. PHYSICAL REVIEW B 63(6), 2001. BibTeX

@article{ ISI:000166911400046,
	author = "Xia, K and Kelly, PJ and Bauer, GEW and Turek, I and Kudrnovsky, J and Drchal, V",
	title = "{Interface resistance of disordered magnetic multilayers}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2001}",
	volume = "{63}",
	number = "{6}",
	month = "{FEB 1}",
	abstract = "{We study the effect of intel face disorder on the spin-dependent interface resistances of Co/Cu, Fe/Cr, and Au/Ag multilayers using a newly developed method fur calculating transmission matrices from first-principles. The efficient implementation using tight-binding linear-muffin-tin orbitals allows us to model interface disorder using large lateral supercells whereby specular and diffuse scattering are treated on an equal footing. Without introducing any free parameters, quantitative agreement with experiment is obtained. We predict that disorder, reduces the majority-spin interface resistance of Fe/Cr(100) multilayers by a factor 3.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Xia, K (Reprint Author), Univ Twente, Fac Appl Phys, POB 217, NL-7500 AE Enschede, Netherlands. Univ Twente, Fac Appl Phys, NL-7500 AE Enschede, Netherlands. Univ Twente, MESA Res Inst, NL-7500 AE Enschede, Netherlands. Delft Univ Technol, Dept Appl Phys, NL-2628 CJ Delft, Netherlands. Delft Univ Technol, DIMES, NL-2628 CJ Delft, Netherlands. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague, Czech Republic.}",
	doi = "{10.1103/PhysRevB.63.064407}",
	article-number = "{064407}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{PERPENDICULAR GIANT MAGNETORESISTANCE; METALLIC MULTILAYERS; SUPERLATTICES; SCATTERING; TRANSPORT}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bauer, Gerrit/F-8273-2010 Kelly, Paul/G-4210-2010 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bauer, Gerrit/0000-0002-3615-8673 Kelly, Paul/0000-0001-9040-1868 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. Ansermet JP, 1998, J PHYS-CONDENS MAT, V10, P6027, DOI 10.1088/0953-8984/10/27/005. BAIBICH MN, 1988, PHYS REV LETT, V61, P2472, DOI 10.1103/PhysRevLett.61.2472. BARTHELEMY A, 1999, HDB MAGNETIC MAT, V12, P47204. Bass J, 1999, J MAGN MAGN MATER, V200, P274, DOI 10.1016/S0304-8853(99)00316-9. BINASCH G, 1989, PHYS REV B, V39, P4828, DOI 10.1103/PhysRevB.39.4828. BRATAAS A, 1994, PHYS REV B, V49, P14684, DOI 10.1103/PhysRevB.49.14684. Bruno P, 1999, J MAGN MAGN MATER, V198-99, P46, DOI 10.1016/S0304-8853(98)00614-3. Datta S., 1995, ELECT TRANSPORT MESO. DEGRONCKEL HAM, 1991, PHYS REV B, V44, P9100, DOI 10.1103/PhysRevB.44.9100. GIJS MAM, 1993, PHYS REV LETT, V70, P3343, DOI 10.1103/PhysRevLett.70.3343. Gijs MAM, 1997, ADV PHYS, V46, P285, DOI 10.1080/00018739700101518. Henry LL, 1996, PHYS REV B, V54, P12336, DOI 10.1103/PhysRevB.54.12336. Kapusta C, 1999, J ALLOY COMPD, V286, P37, DOI 10.1016/S0925-8388(98)00977-3. Kudrnovsky J, 1999, CZECH J PHYS, V49, P1583, DOI 10.1023/A:1022871831961. Levy PM, 1994, SOLID STATE PHYS, V47, P367, DOI 10.1016/S0081-1947(08)60642-6. Mathon J, 1997, PHYS REV B, V55, P960, DOI 10.1103/PhysRevB.55.960. PRATT WP, 1991, PHYS REV LETT, V66, P3060, DOI 10.1103/PhysRevLett.66.3060. Schep KM, 1997, PHYS REV B, V56, P10805, DOI 10.1103/PhysRevB.56.10805. SCHEP KM, 1995, PHYS REV LETT, V74, P586, DOI 10.1103/PhysRevLett.74.586. Stiles MD, 2000, PHYS REV B, V61, P3200, DOI 10.1103/PhysRevB.61.3200. Turek I., 1997, ELECT STRUCTURE DISO. VALET T, 1993, PHYS REV B, V48, P7099, DOI 10.1103/PhysRevB.48.7099. ZAHN P, 1995, PHYS REV LETT, V75, P2996, DOI 10.1103/PhysRevLett.75.2996. Zhang SF, 1998, PHYS REV B, V57, P5336, DOI 10.1103/PhysRevB.57.5336.}",
	number-of-cited-references = "{25}",
	times-cited = "{90}}, Usage-Count-(Last-180-days) = {{2}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{401DG}",
	unique-id = "{ISI:000166911400046}"
}

I Turek, M Freyss, P Weinberger, D Stoeffler and H Dreysse. Interdiffusion and exchange coupling in Cr overlayers on a Fe(001) substrate. PHYSICAL REVIEW B 63(2), 2001. BibTeX

@article{ ISI:000166382200037,
	author = "Turek, I and Freyss, M and Weinberger, P and Stoeffler, D and Dreysse, H",
	title = "{Interdiffusion and exchange coupling in Cr overlayers on a Fe(001) substrate}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2001}",
	volume = "{63}",
	number = "{2}",
	month = "{JAN 1}",
	abstract = "{The influence of interfacial interdiffusion on the magnetic order in ultrathin epitaxial Cr films on a Fe(001) substrate was studied by means of electronic structure calculations. The total coverage of the films was assumed to be one, two, and six monolayers of Cr while the interdiffusion was simulated by two-dimensional Cr-Fe alloys in the two atomic layers forming the Cr/Fe interface. Two limiting cases were considered: (i) perfectly ordered alloys, described in terms of a semiempirical tight-binding method using the recursion technique, and (ii) substitutionally disordered alloys, whose electronic structure was determined ab initio using the tight-binding linear muffin-tin orbital method and the coherent-potential approximation. In both cases, the magnetic coupling of the Cr overlayer to the ferromagnetic Fe substrate exhibits similar transitions (pi phase shifts) due to varying compositions at the interface. The calculated results provide additional support for recent interpretations of experiments on Fe/Cr/Fe(001) trilayers.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Vienna Univ Technol, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Inst Phys \& Chim Mat Strasbourg, F-67037 Strasbourg, France.}",
	article-number = "{024413}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{ELECTRONIC-STRUCTURE; METAL MONOLAYERS; MAGNETISM; FE; FILMS; INTERFACES; SURFACES; FE(100); LAYERS; FE/CR}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Stoeffler, Daniel/I-1145-2016}",
	cited-references = "{Asada T, 1999, J PHYS-CONDENS MAT, V11, P9347, DOI 10.1088/0953-8984/11/48/302. Beer N., 1984, Electronic Structure of Complex Systems. Proceedings of a NATO Advanced Study Institute, P769. Coehoorn R, 1995, J MAGN MAGN MATER, V151, P341, DOI 10.1016/0304-8853(95)00506-4. Davies A, 1996, PHYS REV LETT, V76, P4175, DOI 10.1103/PhysRevLett.76.4175. FREEMAN AJ, 1991, J MAGN MAGN MATER, V100, P497, DOI 10.1016/0304-8853(91)90837-Z. Freyss M, 1997, PHYS REV B, V56, P6047, DOI 10.1103/PhysRevB.56.6047. GRUNBERG P, 1986, PHYS REV LETT, V57, P2442, DOI 10.1103/PhysRevLett.57.2442. Handschuh S, 1998, SOLID STATE COMMUN, V105, P633, DOI 10.1016/S0038-1098(97)10176-4. HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215. Heinrich B, 1999, PHYS REV B, V59, P14520, DOI 10.1103/PhysRevB.59.14520. Klautau AB, 1999, PHYS REV B, V60, P3421, DOI 10.1103/PhysRevB.60.3421. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. Mirbt S, 1995, PHYS REV B, V52, P15070, DOI 10.1103/PhysRevB.52.15070. Mirbt S, 1996, PHYS REV B, V54, P6382, DOI 10.1103/PhysRevB.54.6382. MORONI EG, 1993, PHYS REV B, V47, P3255, DOI 10.1103/PhysRevB.47.3255. PARKIN SSP, 1990, PHYS REV LETT, V64, P2304, DOI 10.1103/PhysRevLett.64.2304. Pfandzelter R, 1996, PHYS REV B, V54, P4496, DOI 10.1103/PhysRevB.54.4496. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. STOEFFLER D, 1990, PROG THEOR PHYS SUPP, P139. Turek I, 1998, PHILOS MAG B, V78, P637, DOI 10.1080/13642819808206771. Turek I, 2000, LECT NOTES PHYS, V535, P349. Turek I., 1997, ELECT STRUCTURE DISO. UNGURIS J, 1992, PHYS REV LETT, V69, P1125, DOI 10.1103/PhysRevLett.69.1125. Venus D, 1996, PHYS REV B, V53, pR1733. VOSKO SH, 1980, CAN J PHYS, V58, P1200.}",
	number-of-cited-references = "{25}",
	times-cited = "{4}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{391XU}",
	unique-id = "{ISI:000166382200037}"
}

M Pajda, J Kudrnovsky, I Turek, V Drchal and P Bruno. Oscillatory Curie temperature of two-dimensional ferromagnets. PHYSICAL REVIEW LETTERS 85(25):5424-5427, 2000. BibTeX

@article{ ISI:000165884200041,
	author = "Pajda, M and Kudrnovsky, J and Turek, I and Drchal, V and Bruno, P",
	title = "{Oscillatory Curie temperature of two-dimensional ferromagnets}",
	journal = "{PHYSICAL REVIEW LETTERS}",
	year = "{2000}",
	volume = "{85}",
	number = "{25}",
	pages = "{5424-5427}",
	month = "{DEC 18}",
	abstract = "{The effective exchange interactions of magnetic overlayers Fe/Cu(001) and Co/Cu(001) covered by a Cu-cap layer of varying thickness were calculated in real space from first principles. The effective two-dimensional Heisenberg Hamiltonian was, constructed and used to estimate magnon dispersion laws, spin-wave stiffness constants, and overlayer Curie temperatures within the mean-field and random-phase approximations. Overlayer Curie temperature oscillates as a function of the cap-layer thickness in a qualitative agreement with a recent experiment.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Pajda, M (Reprint Author), Max Planck Inst Mikrostrukturphys, Weinberg 2, D-06120 Halle, Germany. Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1103/PhysRevLett.85.5424}",
	issn = "{0031-9007}",
	keywords-plus = "{EXCHANGE INTERACTIONS; FIRST-PRINCIPLES; SPIN DYNAMICS; METALS; IRON; CAP; FE; CO; NI}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Antropov VP, 1999, J MAGN MAGN MATER, V200, P148, DOI 10.1016/S0304-8853(99)00425-4. BRUNO P, 1992, MATER RES SOC SYMP P, V231, P299. Frota-Pessoa S, 2000, PHYS REV B, V62, P5293, DOI 10.1103/PhysRevB.62.5293. Halilov SV, 1998, PHYS REV B, V58, P293, DOI 10.1103/PhysRevB.58.293. HASS KC, 1984, PHYS REV B, V29, P3697, DOI 10.1103/PhysRevB.29.3697. Kudrnovsky J, 1997, PHYS REV B, V56, P8919, DOI 10.1103/PhysRevB.56.8919. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. MERMIN ND, 1966, PHYS REV LETT, V17, P1133, DOI 10.1103/PhysRevLett.17.1133. Ney A, 1999, PHYS REV B, V59, pR3938, DOI 10.1103/PhysRevB.59.R3938. OKUNO SN, 1995, J PHYS SOC JPN, V64, P3631, DOI 10.1143/JPSJ.64.3631. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. PAJDA M, CONDMAT0007441. Sakuma A, 1999, J PHYS SOC JPN, V68, P620, DOI 10.1143/JPSJ.68.620. Spisak D, 1997, J MAGN MAGN MATER, V168, P257, DOI 10.1016/S0304-8853(96)00700-7. STAUNTON JB, 1992, PHYS REV LETT, V69, P371, DOI 10.1103/PhysRevLett.69.371. Szunyogh L, 1998, PHILOS MAG B, V78, P617, DOI 10.1080/13642819808206768. Turek I., 1997, ELECT STRUCTURE DISO. Tyablikov S. V., 1967, METHODS QUANTUM THEO. van Schilfgaarde M, 1999, J APPL PHYS, V85, P4827, DOI 10.1063/1.370495. Vollmer R, 2000, PHYS REV B, V61, P1303, DOI 10.1103/PhysRevB.61.1303. WANG CS, 1982, PHYS REV B, V25, P5766, DOI 10.1103/PhysRevB.25.5766.}",
	number-of-cited-references = "{21}",
	times-cited = "{85}}, Usage-Count-(Last-180-days) = {{5}",
	usage-count-since-2013 = "{15}",
	journal-iso = "{Phys. Rev. Lett.}",
	doc-delivery-number = "{383LN}",
	unique-id = "{ISI:000165884200041}"
}

J Kudrnovsky, V Drchal, C Blaas, P Weinberger, I Turek and P Bruno. Ab initio theory of perpendicular magnetotransport in metallic multilayers. PHYSICAL REVIEW B 62(22):15084-15095, 2000. BibTeX

@article{ ISI:000165883800064,
	author = "Kudrnovsky, J and Drchal, V and Blaas, C and Weinberger, P and Turek, I and Bruno, P",
	title = "{Ab initio theory of perpendicular magnetotransport in metallic multilayers}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{2000}",
	volume = "{62}",
	number = "{22}",
	pages = "{15084-15095}",
	month = "{DEC 1}",
	abstract = "{The current-perpendicular-to-plane (CPP) magnetotransport of a metallic sample sandwiched by two ideal leads is described at an ab initio level. The so-called ``active{''} part of the system is either a trilayer consisting of two magnetic slabs of finite thickness separated by a nonmagnetic spacer or a multilayer formed by alternating magnetic and nonmagnetic layers. We use a transmission matrix formulation of the conductance based on surface Green's functions as formulated by means of the tight-binding linear muffin-tin orbital method. The formalism is extended to the case of lateral supercells with random arrangements of atoms of two types, which in turn allows to deal with specular and diffusive scattering on equal footing, and which is applicable also to the case of noncollinear alignments of the magnetization in the layers. Applications refer to fee-based Co/Cu/Co(001) trilayers and multilayers, considering in detail the effect of substitutional alloying in the spacer and in the magnetic layers, as well as interdiffusion at the interfaces.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Vienna Tech Univ, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany.}",
	doi = "{10.1103/PhysRevB.62.15084}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{GIANT MAGNETORESISTANCE; MAGNETIC MULTILAYERS; ELECTRICAL-CONDUCTIVITY; FUNCTION FORMALISM; TRANSPORT; CO; SUPERLATTICES; SCATTERING; SYSTEMS; WALL}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. BAIBICH MN, 1988, PHYS REV LETT, V61, P2472, DOI 10.1103/PhysRevLett.61.2472. BINASCH G, 1989, PHYS REV B, V39, P4828, DOI 10.1103/PhysRevB.39.4828. Blaas C, 1999, PHYS REV B, V60, P492, DOI 10.1103/PhysRevB.60.492. BOSE SK, 1993, PHYS REV B, V48, P4265, DOI 10.1103/PhysRevB.48.4265. Bruno P, 1999, J MAGN MAGN MATER, V198-99, P46, DOI 10.1016/S0304-8853(98)00614-3. Bruno P, 1999, PHYS REV LETT, V83, P2425, DOI 10.1103/PhysRevLett.83.2425. BUTLER WH, 1995, PHYS REV B, V52, P13399, DOI 10.1103/PhysRevB.52.13399. Cerda J, 1997, PHYS REV B, V56, P15885, DOI 10.1103/PhysRevB.56.15885. Datta S., 1995, ELECT TRANSPORT MESO. Drchal V, 1996, PHYS REV B, V53, P15036, DOI 10.1103/PhysRevB.53.15036. DREHAL V, 1996, COMPUT PHYS COMMUN, V97, P111. Gijs MAM, 1997, ADV PHYS, V46, P285, DOI 10.1080/00018739700101518. GODFRIN EM, 1991, J PHYS-CONDENS MAT, V3, P7843, DOI 10.1088/0953-8984/3/40/005. GYORFFY BL, 1979, NATO ADV STUDY I B, V42. JAMES F, 1990, COMPUT PHYS COMMUN, V60, P329, DOI 10.1016/0010-4655(90)90032-V. LEE PA, 1981, PHYS REV LETT, V47, P882, DOI 10.1103/PhysRevLett.47.882. Levy PM, 1997, PHYS REV LETT, V79, P5110, DOI 10.1103/PhysRevLett.79.5110. Levy PM, 1994, SOLID STATE PHYS, V47, P367, DOI 10.1016/S0081-1947(08)60642-6. Mathon J, 1997, PHYS REV B, V55, P14378, DOI 10.1103/PhysRevB.55.14378. Mathon J, 1997, PHYS REV B, V55, P960, DOI 10.1103/PhysRevB.55.960. Penn DR, 1999, PHYS REV B, V59, P13338, DOI 10.1103/PhysRevB.59.13338. PRATT WP, 1991, PHYS REV LETT, V66, P3060, DOI 10.1103/PhysRevLett.66.3060. Sanvito S, 1999, PHYS REV B, V59, P11936, DOI 10.1103/PhysRevB.59.11936. Sanvito S, 1999, PHYS REV B, V60, P7385, DOI 10.1103/PhysRevB.60.7385. Schep KM, 1998, PHYS REV B, V57, P8907, DOI 10.1103/PhysRevB.57.8907. STOVNENG JA, 1994, PHYS REV B, V49, P16494, DOI 10.1103/PhysRevB.49.16494. Tanaka H, 1998, PHYS REV LETT, V81, P3727, DOI 10.1103/PhysRevLett.81.3727. Tatara G, 1999, PHYS REV LETT, V83, P2030, DOI 10.1103/PhysRevLett.83.2030. Tsymbal EY, 1998, PHYS REV B, V58, P432, DOI 10.1103/PhysRevB.58.432. TUREK I, UNPUB. Turek I., 1997, ELECT STRUCTURE DISO. van Hoof JBAN, 1999, PHYS REV B, V59, P138, DOI 10.1103/PhysRevB.59.138. Vouille C, 1999, PHYS REV B, V60, P6710, DOI 10.1103/PhysRevB.60.6710. Weinberger P, 1997, PHILOS MAG B, V75, P509, DOI 10.1080/13642819708202336. Weinberger P, 1996, J PHYS-CONDENS MAT, V8, P7677, DOI 10.1088/0953-8984/8/41/013. ZAHN P, 1995, PHYS REV LETT, V75, P2996, DOI 10.1103/PhysRevLett.75.2996. Zhang SF, 1998, PHYS REV B, V57, P5336, DOI 10.1103/PhysRevB.57.5336.}",
	number-of-cited-references = "{38}",
	times-cited = "{87}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{6}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{383LJ}",
	unique-id = "{ISI:000165883800064}"
}

J Kudrnovsky, V Drchal, I Turek, C Blaas, P Weinberger and P Bruno. The influence of defects on electrical transport in magnetic multilayers. JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY 52(7):29-32, Červenec 2000. BibTeX

@article{ ISI:000088235200006,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Blaas, C and Weinberger, P and Bruno, P",
	title = "{The influence of defects on electrical transport in magnetic multilayers}",
	journal = "{JOM-JOURNAL OF THE MINERALS METALS \& MATERIALS SOCIETY}",
	year = "{2000}",
	volume = "{52}",
	number = "{7}",
	pages = "{29-32}",
	month = "{JUL}",
	abstract = "{The transmission matrix approach was used to evaluate the perpendicular magnetotransport in metallic multilayers on an abinitio level. The spin-polarized, surface Green function technique was employed within the framework of the tight-binding, linens muffin-tin orbital method. The effect of impurities runs included in terms of lateral supercells with random arrangements of two types of atoms. This approach treats both the ballistic and the diffusive regimes of magnetotransport on equal footing. The method was also applied to face-centered-cubic-based Co/Cu/Co(001) trilayers.}",
	publisher = "{MINERALS METALS MATERIALS SOC}",
	address = "{420 COMMONWEALTH DR, WARRENDALE, PA 15086 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Theory Dept, Na Slovance 2, CZ-18221 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Theory Dept, CZ-18221 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, Prague, Czech Republic. Tech Univ Vienna, Ctr Computat Mat Sci, Vienna, Austria. Max Planck Inst Microstruct Phys, D-06120 Halle, Germany.}",
	doi = "{10.1007/s11837-000-0158-1}",
	issn = "{1047-4838}",
	keywords-plus = "{GIANT MAGNETORESISTANCE; FUNCTION FORMALISM; CONDUCTIVITY}",
	research-areas = "{Materials Science; Metallurgy \& Metallurgical Engineering; Mineralogy; Mining \& Mineral Processing}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Metallurgy \& Metallurgical Engineering; Mineralogy; Mining \& Mineral Processing}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{BAIBICH MN, 1988, PHYS REV LETT, V61, P2472, DOI 10.1103/PhysRevLett.61.2472. Blaas C, 1999, PHYS REV B, V60, P492, DOI 10.1103/PhysRevB.60.492. Bruno P, 1999, J MAGN MAGN MATER, V198-99, P46, DOI 10.1016/S0304-8853(98)00614-3. BUTLER WH, 1995, PHYS REV B, V52, P13399, DOI 10.1103/PhysRevB.52.13399. Cerda J, 1997, PHYS REV B, V56, P15885, DOI 10.1103/PhysRevB.56.15885. Datta S., 1995, ELECT TRANSPORT MESO. GYORFFY BL, 1979, NATO ASI SERIES. JAMES F, 1990, COMPUT PHYS COMMUN, V60, P329, DOI 10.1016/0010-4655(90)90032-V. Levy PM, 1994, SOLID STATE PHYS, V47, P367, DOI 10.1016/S0081-1947(08)60642-6. Mathon J, 1997, PHYS REV B, V56, P11810, DOI 10.1103/PhysRevB.56.11810. PRATT WP, 1991, PHYS REV LETT, V66, P3060, DOI 10.1103/PhysRevLett.66.3060. Sanvito S, 1999, PHYS REV B, V59, P11936, DOI 10.1103/PhysRevB.59.11936. Schep KM, 1998, PHYS REV B, V57, P8907, DOI 10.1103/PhysRevB.57.8907. STOVNENG JA, 1994, PHYS REV B, V49, P16494, DOI 10.1103/PhysRevB.49.16494. TUREK L, 1997, ELECT STRUCTURE DISO, P47204. Weinberger P, 1996, J PHYS-CONDENS MAT, V8, P7677, DOI 10.1088/0953-8984/8/41/013. ZAHN P, 1995, PHYS REV LETT, V75, P3216. Zhang SF, 1998, PHYS REV B, V57, P5336, DOI 10.1103/PhysRevB.57.5336.}",
	number-of-cited-references = "{18}",
	times-cited = "{4}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{JOM-J. Miner. Met. Mater. Soc.}",
	doc-delivery-number = "{335GF}",
	unique-id = "{ISI:000088235200006}"
}

J Kudrnovsky, V Drchal, I Turek, C Blaas, P Weinberger and P Bruno. The CPP transport in metallic magnetic multilayers. SURFACE SCIENCE 454:918-924, 2000. 18th European Conference on Surface Science (ECOSS 18), VIENNA UNIV TECHNOL, VIENNA, AUSTRIA, SEP 21-24, 1999. BibTeX

@article{ ISI:000087766200175,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Blaas, C and Weinberger, P and Bruno, P",
	title = "{The CPP transport in metallic magnetic multilayers}",
	journal = "{SURFACE SCIENCE}",
	year = "{2000}",
	volume = "{454}",
	pages = "{918-924}",
	month = "{MAY 20}",
	note = "{18th European Conference on Surface Science (ECOSS 18), VIENNA UNIV TECHNOL, VIENNA, AUSTRIA, SEP 21-24, 1999}",
	organization = "{Inst Allgemeine Phys}",
	abstract = "{The transmission matrix approach is used to evaluate perpendicular magnetotransport in metallic multilayers that consist of two magnetic slabs separated by a non-magnetic spacer. We employ the spin-polarized surface Green function technique within the framework of the tight-binding linear muffin-tin orbital method. Our approach allows both the ballistic and the diffusive regime of magnetotransport to be treated on equal footing. The effect of disorder is included in terms of lateral supercells confined to individual atomic layers. In this paper, we apply the method to fee-based Co/Cu/Co(001) trilayers. (C) 2000 Elsevier Science B.V. All rights reserved.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Vienna Tech Univ, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Vienna Tech Univ, Inst Tech Electrochem \& Solid State Chem, A-1060 Vienna, Austria. Max Planck Inst Microstruct Phys, D-06120 Halle, Germany.}",
	doi = "{10.1016/S0039-6028(00)00069-8}",
	issn = "{0039-6028}",
	keywords = "{cobalt; copper; magnetic films; metallic films}",
	keywords-plus = "{TIGHT-BINDING THEORY; GIANT MAGNETORESISTANCE; ELECTRICAL-CONDUCTIVITY}",
	research-areas = "{Chemistry; Physics}",
	web-of-science-categories = "{Chemistry, Physical; Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. BLAAS C, 1999, J PHYS CONDENS MATT, V60, P492. Bruno P, 1999, J MAGN MAGN MATER, V198-99, P46, DOI 10.1016/S0304-8853(98)00614-3. BUTLER WH, 1995, PHYS REV B, V52, P13399, DOI 10.1103/PhysRevB.52.13399. GYORFFY BL, 1979, NATO ASI SERIES. Levy PM, 1994, SOLID STATE PHYS, V47, P367, DOI 10.1016/S0081-1947(08)60642-6. Mathon J, 1997, PHYS REV B, V56, P11810, DOI 10.1103/PhysRevB.56.11810. PRATT WP, 1991, PHYS REV LETT, V66, P3060, DOI 10.1103/PhysRevLett.66.3060. Sanvito S, 1999, PHYS REV B, V59, P11936, DOI 10.1103/PhysRevB.59.11936. Schep KM, 1998, PHYS REV B, V57, P8907, DOI 10.1103/PhysRevB.57.8907. STOVNENG JA, 1994, PHYS REV B, V49, P16494, DOI 10.1103/PhysRevB.49.16494. TUREK I, 1997, ELECT SURFACES DISOR. Weinberger P, 1996, J PHYS-CONDENS MAT, V8, P7677, DOI 10.1088/0953-8984/8/41/013. ZAHN P, 1995, PHYS REV LETT, V75, P3216.}",
	number-of-cited-references = "{14}",
	times-cited = "{8}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Surf. Sci.}",
	doc-delivery-number = "{326ZB}",
	unique-id = "{ISI:000087766200175}"
}

J Kudrnovsky, V Drchal, I Turek, P Bruno, P Dederichs and P Weinberger. Ab initio theory of the interlayer exchange coupling. In H Dreysse (ed.). ELECTRONIC STRUCTURE AND PHYSICAL PROPERTIES OF SOLIDS: THE USES OF THE LMTO METHOD 535. 2000, 313-346. Workshop on Electronic Structure and Physical Properties of Solids, MONT ST ODILE, FRANCE, OCT 02-05, 1998. BibTeX

@inproceedings{ ISI:000088540000009,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Bruno, P and Dederichs, P and Weinberger, P",
	editor = "{Dreysse, H}",
	title = "{Ab initio theory of the interlayer exchange coupling}",
	booktitle = "{ELECTRONIC STRUCTURE AND PHYSICAL PROPERTIES OF SOLIDS: THE USES OF THE LMTO METHOD}",
	series = "{LECTURE NOTES IN PHYSICS}",
	year = "{2000}",
	volume = "{535}",
	pages = "{313-346}",
	note = "{Workshop on Electronic Structure and Physical Properties of Solids, MONT ST ODILE, FRANCE, OCT 02-05, 1998}",
	abstract = "{Ab initio formulations of the interlayer exchange coupling (IEC) between two, in general non-collinearly aligned magnetic slabs embedded in a non-magnetic spacer are reviewed whereby both the spacer and the magnetic slabs as well as their interfaces may be either ideal or random. These formulations are based on the spin-polarized surface Green function technique within the tight-binding linear muffin-tin orbital method, the Lloyd formulation of the IEC, and the coherent potential approximation using the vertex-cancellation theorem. We also present an effective method for the study of the temperature dependence of the IEC. The periods, amplitudes, and phases are studied in terms of discrete Fourier transformations, the asymptotic behavior of the IEC is briefly discussed within the stationary-phase method. Numerical results illustrating the theory are presented.}",
	publisher = "{SPRINGER-VERLAG BERLIN}",
	address = "{HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic.}",
	issn = "{0075-8450}",
	isbn = "{3-540-67238-9}",
	keywords-plus = "{MAGNETIC MULTILAYERS; OSCILLATION PERIODS; GREEN-FUNCTION; TORQUE METHOD; LAYERS; FE; SYSTEMS; CU; CONFINEMENT; TEMPERATURE}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. BLAAS C, UNPUB J PHYS FRANCE. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. Bruno P, 1997, J MAGN MAGN MATER, V165, P128, DOI 10.1016/S0304-8853(96)00487-8. Bruno P, 1996, J MAGN MAGN MATER, V164, P27, DOI 10.1016/S0304-8853(96)00366-6. Castro JDE, 1996, PHYS REV B, V53, P13306. DRCHAL V, 1992, PHYS REV B, V45, P14328, DOI 10.1103/PhysRevB.45.14328. Drchal V, 1996, PHYS REV B, V53, P15036, DOI 10.1103/PhysRevB.53.15036. Drchal V, 1998, PHILOS MAG B, V78, P571, DOI 10.1080/13642819808206761. Drchal V, 1996, COMPUT PHYS COMMUN, V97, P111, DOI 10.1016/0010-4655(96)00025-2. DRCHAL V, UNPUB. DUCASTELLE F, 1975, J PHYS C SOLID STATE, V8, P3297, DOI 10.1088/0022-3719/8/20/008. EDWARDS DM, 1995, J MAGN MAGN MATER, V140, P517, DOI 10.1016/0304-8853(94)01534-1. Ferreira MS, 1997, J PHYS-CONDENS MAT, V9, P6665, DOI 10.1088/0953-8984/9/31/018. GODFRIN EM, 1991, J PHYS-CONDENS MAT, V3, P7843, DOI 10.1088/0953-8984/3/40/005. KROMPIEWSKI S, 1994, EUROPHYS LETT, V26, P303, DOI 10.1209/0295-5075/26/4/011. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. Kudrnovsky J, 1996, PHYS REV B, V53, P5125, DOI 10.1103/PhysRevB.53.5125. Kudrnovsky J, 1996, PHYS REV LETT, V76, P3834, DOI 10.1103/PhysRevLett.76.3834. Kudrnovsky J, 1996, PHYS REV B, V54, pR3738. Kudrnovsky J, 1997, PHYS REV B, V56, P8919, DOI 10.1103/PhysRevB.56.8919. Kudrnovsky J, 1997, MATER RES SOC SYMP P, V475, P575. Kudrnovsky J, 1997, PHYS REV LETT, V78, P358, DOI 10.1103/PhysRevLett.78.358. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. KUDRNOVSKY J, 1993, PHYS REV B, V47, P16525, DOI 10.1103/PhysRevB.47.16525. LANCZOS C, 1988, APPL ANAL, P219. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. Lang P, 1996, PHYS REV B, V53, P9092, DOI 10.1103/PhysRevB.53.9092. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. LLOYD P, 1972, ADV PHYS, V21, P69, DOI 10.1080/00018737200101268. LOWDIN PO, 1951, J CHEM PHYS, V19, P1396. Mackintosh A R, 1980, ELECT FERMI SURFACE. Mathon J, 1997, PHYS REV B, V56, P11797, DOI 10.1103/PhysRevB.56.11797. Messiah A., 1968, QUANTUM MECH, VII. MIRBT S, 1993, SOLID STATE COMMUN, V88, P331, DOI 10.1016/0038-1098(93)90519-S. NORDSTROM L, 1994, PHYS REV B, V50, P13058, DOI 10.1103/PhysRevB.50.13058. OSWALD A, 1985, J PHYS F MET PHYS, V15, P193, DOI 10.1088/0305-4608/15/1/021. SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995, DOI 10.1103/PhysRevB.39.6995. STILES MD, 1993, PHYS REV B, V48, P7238, DOI 10.1103/PhysRevB.48.7238. Szunyogh L, 1996, PHYS REV B, V54, P6430, DOI 10.1103/PhysRevB.54.6430. TUREK T, 1997, ELECT STRUCTURE DISO. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923, DOI 10.1103/PhysRevLett.71.1923. VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063, DOI 10.1103/PhysRevLett.74.4063. Weinberger P, 1997, PHILOS MAG B, V75, P509, DOI 10.1080/13642819708202336. Weinberger P, 1997, INT J QUANTUM CHEM, V63, P165, DOI 10.1002/(SICI)1097-461X(1997)63:1<165::AID-QUA19>3.0.CO;2-B. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009. Zabloudil J, 1998, PHYS REV B, V57, P7804, DOI 10.1103/PhysRevB.57.7804. 1998, J RES DEV, V42.}",
	number-of-cited-references = "{49}",
	times-cited = "{9}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	doc-delivery-number = "{BQ50P}",
	unique-id = "{ISI:000088540000009}"
}

I Turek, J Kudrnovsky and V Drchal. Disordered alloys and their surfaces: The coherent potential approximation. In H Dreysse (ed.). ELECTRONIC STRUCTURE AND PHYSICAL PROPERTIES OF SOLIDS: THE USES OF THE LMTO METHOD 535. 2000, 349-378. Workshop on Electronic Structure and Physical Properties of Solids, MONT ST ODILE, FRANCE, OCT 02-05, 1998. BibTeX

@inproceedings{ ISI:000088540000010,
	author = "Turek, I and Kudrnovsky, J and Drchal, V",
	editor = "{Dreysse, H}",
	title = "{Disordered alloys and their surfaces: The coherent potential approximation}",
	booktitle = "{ELECTRONIC STRUCTURE AND PHYSICAL PROPERTIES OF SOLIDS: THE USES OF THE LMTO METHOD}",
	series = "{Lecture Notes in Physics}",
	year = "{2000}",
	volume = "{535}",
	pages = "{349-378}",
	note = "{Workshop on Electronic Structure and Physical Properties of Solids, MONT ST ODILE, FRANCE, OCT 02-05, 1998}",
	abstract = "{A recently developed ab initio approach to the electronic structure of substitutionally disordered alloys and their surfaces is reviewed. It is based on (i) the tight-binding linear muffin-tin orbital (TB-LMTO) method in the atomic sphere approximation which provides a physically transparent solution of the one-electron problem in metallic materials, (ii) the coherent potential approximation (CPA) for a mean-field treatment of the substitutional randomness, and (iii) the surface Green functions for a proper description of the true semi-infinite geometry of surfaces and interfaces. Theoretical formulation of fundamental electronic quantities, both site-diagonal (charge densities, densities of states) and site non-diagonal (the Bloch spectral functions) is presented. Transformation properties of the LMTO-CPA theory as well as specific problems of application of the local density approximation to random alloys are briefly discussed and basic algorithms employed in the numerical implementation of the formalism are described.}",
	publisher = "{SPRINGER-VERLAG BERLIN}",
	address = "{HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	issn = "{0075-8450}",
	isbn = "{3-540-67238-9}",
	keywords-plus = "{TIN-ORBITAL METHOD; EFFECTIVE INTERATOMIC INTERACTIONS; BAND-STRUCTURE METHODS; ELECTRONIC-STRUCTURE; GREEN-FUNCTION; METALLIC ALLOYS; BINARY-ALLOYS; CU-NI; AG-PD; DENSITY}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Abrikosov IA, 1998, PHYS REV B, V57, P14164, DOI 10.1103/PhysRevB.57.14164. ABRIKOSOV IA, 1994, PHYS REV B, V50, P2039, DOI 10.1103/PhysRevB.50.2039. Abrikosov IA, 1996, PHYS REV B, V54, P3380, DOI 10.1103/PhysRevB.54.3380. ABRIKOSOV IA, 1995, PHYS REV B, V51, P1058, DOI 10.1103/PhysRevB.51.1058. ABRIKOSOV IA, 1993, PHYS REV B, V47, P16532, DOI 10.1103/PhysRevB.47.16532. ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. ANDERSEN OK, 1986, PHYS REV B, V34, P5253, DOI 10.1103/PhysRevB.34.5253. Andersen O. K., 1986, ELECT BAND STRUCTURE, DOI 10.1007/3540180982\_1. BLACKMAN JA, 1971, PHYS REV B-SOLID ST, V4, P2412, DOI 10.1103/PhysRevB.4.2412. Bose SK, 1997, PHYS REV B, V55, P8184, DOI 10.1103/PhysRevB.55.8184. Christensen A, 1997, PHYS REV B, V56, P5822, DOI 10.1103/PhysRevB.56.5822. CONNOLLY JWD, 1983, PHYS REV B, V27, P5169, DOI 10.1103/PhysRevB.27.5169. DRCHAL V, 1992, PHYS REV B, V45, P14328, DOI 10.1103/PhysRevB.45.14328. Drchal V, 1996, PHYS REV B, V54, P8202, DOI 10.1103/PhysRevB.54.8202. Drchal V, 1998, MATER RES SOC SYMP P, V491, P65. Drchal V, 1996, COMPUT PHYS COMMUN, V97, P111, DOI 10.1016/0010-4655(96)00025-2. DRCHAL V, 1994, PHYS REV B, V50, P7903, DOI 10.1103/PhysRevB.50.7903. DUCASTELLE F, 1976, J PHYS F MET PHYS, V6, P2039, DOI 10.1088/0305-4608/6/11/005. DUCASTELLE F, 1975, J PHYS C SOLID STATE, V8, P3297, DOI 10.1088/0022-3719/8/20/008. Ducastelle F., 1991, ORDER PHASE STABILIT. Eschrig H., 1989, OPTIMIZED LCAO METHO. Eyert V, 1996, J COMPUT PHYS, V124, P271, DOI 10.1006/jcph.1996.0059. FAULKNER JS, 1980, PHYS REV B, V21, P3222, DOI 10.1103/PhysRevB.21.3222. FAULKNER JS, 1982, PROG MATER SCI, V27, P1, DOI 10.1016/0079-6425(82)90005-6. GandugliaPirovano MV, 1997, PHYS REV LETT, V78, P1807, DOI 10.1103/PhysRevLett.78.1807. GANDUGLIAPIROVANO MV, 1993, PHYS REV B, V48, P1870, DOI 10.1103/PhysRevB.48.1870. Gonis A, 1996, J PHYS-CONDENS MAT, V8, P7883, DOI 10.1088/0953-8984/8/42/008. Gonis A, 1996, J PHYS-CONDENS MAT, V8, P7869, DOI 10.1088/0953-8984/8/42/007. Gonis A., 1992, GREEN FUNCTIONS ORDE. GUNNARSSON O, 1983, PHYS REV B, V27, P7144, DOI 10.1103/PhysRevB.27.7144. HASS KC, 1984, PHYS REV B, V29, P3697, DOI 10.1103/PhysRevB.29.3697. Hayn R, 1998, PHYS REV B, V58, P4341, DOI 10.1103/PhysRevB.58.4341. James P, 1997, PROPERTIES OF COMPLEX INORGANIC SOLIDS, P57. JOHNSON DD, 1993, PHYS REV B, V48, P11553, DOI 10.1103/PhysRevB.48.11553. KOENIG C, 1981, J PHYS LETT-PARIS, V42, pL193. Koepernik K, 1997, PHYS REV B, V55, P5717, DOI 10.1103/PhysRevB.55.5717. KORZHAVYI PA, 1995, PHYS REV B, V51, P5773, DOI 10.1103/PhysRevB.51.5773. Kudmovsky J., 1994, Computational Materials Science, V2, P379, DOI 10.1016/0927-0256(94)90121-X. KUDRNOVSKY J, 1994, PHYS REV B, V50, P9603, DOI 10.1103/PhysRevB.50.9603. KUDRNOVSKY J, 1992, PHYS REV LETT, V69, P308, DOI 10.1103/PhysRevLett.69.308. KUDRNOVSKY J, 1991, PHYS REV B, V44, P6410, DOI 10.1103/PhysRevB.44.6410. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1994, PROG SURF SCI, V46, P159, DOI 10.1016/0079-6816(94)90076-0. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. KUDRNOVSKY J, 1993, PHYS REV B, V47, P16525, DOI 10.1103/PhysRevB.47.16525. Niklasson AMN, 1998, PHYS REV B, V58, P3613, DOI 10.1103/PhysRevB.58.3613. Pinski FJ, 1998, PHYS REV B, V57, P15177, DOI 10.1103/PhysRevB.57.15177. RICHTER R, 1987, J PHYS F MET PHYS, V17, P351, DOI 10.1088/0305-4608/17/2/006. RUBAN AV, 1995, PHYS REV B, V51, P12958, DOI 10.1103/PhysRevB.51.12958. RUBAN AV, 1994, PHYS REV B, V49, P11383, DOI 10.1103/PhysRevB.49.11383. SANCHO MPL, 1985, J PHYS F MET PHYS, V15, P851, DOI 10.1088/0305-4608/15/4/009. Shick AB, 1996, PHYS REV B, V54, P1610, DOI 10.1103/PhysRevB.54.1610. Singh D., 1994, PLANEWAVES PSEUDOPEN. SINGH PP, 1993, PHYS REV B, V48, P2139, DOI 10.1103/PhysRevB.48.2139. SINGH PP, 1993, PHYS REV B, V48, P1989, DOI 10.1103/PhysRevB.48.1989. Skorodumova NV, 1998, PHYS REV B, V57, P14673, DOI 10.1103/PhysRevB.57.14673. Skriver H., 1984, LMTO METHOD. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. SOVEN P, 1967, PHYS REV, V156, P809, DOI 10.1103/PhysRev.156.809. TUREK I, 1994, PHYS REV B, V49, P3352, DOI 10.1103/PhysRevB.49.3352. Turek I, 1996, NATO ADV SCI INST SE, V355, P431. Turek I, 1998, PHYS REV B, V57, P11065. TUREK I, 1995, PHYS REV LETT, V74, P2551, DOI 10.1103/PhysRevLett.74.2551. Turek I., 1997, ELECT STRUCTURE DISO. VELICKY B, 1968, PHYS REV, V175, P747, DOI 10.1103/PhysRev.175.747. VELICKY B, 1977, SURF SCI, V64, P411, DOI 10.1016/0039-6028(77)90053-X. WEINBERGER P, 1990, ELECT SCATTERING THE. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009.}",
	number-of-cited-references = "{69}",
	times-cited = "{28}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	doc-delivery-number = "{BQ50P}",
	unique-id = "{ISI:000088540000010}"
}

O Schneeweiss, J Cermak, I Turek and P Lejcek. Investigations of grain boundaries in copper using emission Mossbauer spectroscopy. HYPERFINE INTERACTIONS 126(1-4):215-218, 2000. International Conference on the Applications of the Mossbauer Effect (ICAME), GARMISCH PARTENKI, GERMANY, AUG 29-SEP 03, 1999. BibTeX

@article{ ISI:000087581000035,
	author = "Schneeweiss, O and Cermak, J and Turek, I and Lejcek, P",
	title = "{Investigations of grain boundaries in copper using emission Mossbauer spectroscopy}",
	journal = "{HYPERFINE INTERACTIONS}",
	year = "{2000}",
	volume = "{126}",
	number = "{1-4}",
	pages = "{215-218}",
	note = "{International Conference on the Applications of the Mossbauer Effect (ICAME), GARMISCH PARTENKI, GERMANY, AUG 29-SEP 03, 1999}",
	abstract = "{Grain boundaries (GBs) in pure Cu specimens were studied by means of (57)Fe emission Mossbauer spectroscopy. A spectrum component which can be ascribed to iron atoms at GBs is represented by the single line with isomer shift 0.67 +/- 0.05 mm/s. It is interpreted as iron atoms at GB sites with expanded atomic volumes and highly symmetric distribution of surrounding atoms.}",
	publisher = "{SPRINGER}",
	address = "{VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Schneeweiss, O (Reprint Author), Acad Sci Czech Republic, Inst Phys Met, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Met, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague, Czech Republic.}",
	doi = "{10.1023/A:1012611006412}",
	issn = "{0304-3843}",
	keywords = "{emission Mossbauer spectroscopy; grain boundary; diffusion; copper; (57)Co}",
	keywords-plus = "{ATOMS; FE}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Atomic, Molecular \& Chemical; Physics, Condensed Matter; Physics, Nuclear}",
	researcherid-numbers = "{Schneeweiss, Oldrich/F-7841-2014 Cermak, Jiri/G-1541-2014 Turek, Ilja/G-5553-2014}",
	cited-references = "{KAIGORODOV VN, 1994, PHYS REV B, V49, P9376, DOI 10.1103/PhysRevB.49.9376. LEJCEK P, 1995, CRIT REV SOLID STATE, V20, P1, DOI 10.1080/10408439508243544. Schneeweiss O., 1994, Nanostructured Materials, V4, DOI 10.1016/0965-9773(94)90087-6. Schneeweiss O, 1998, MATER RES SOC SYMP P, V527, P273. Schneeweiss O, 1999, NATO ASI 3 HIGH TECH, V66, P337. THOMASSEN J, 1992, PHYS REV LETT, V69, P3831, DOI 10.1103/PhysRevLett.69.3831. TSUNODA Y, 1988, J PHYS F MET PHYS, V18, P1421, DOI 10.1088/0305-4608/18/7/011. TUREK I, 1997, ELECT STRUCTURE DISO, pCH8.}",
	number-of-cited-references = "{8}",
	times-cited = "{5}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{Hyperfine Interact.}",
	doc-delivery-number = "{323TL}",
	unique-id = "{ISI:000087581000035}"
}

J Kudrnovsky, V Drchal, I Turek, C Blaas, P Weinberger and P Bruno. Ab-initio theory of the CPP-magnetoconductance. CZECHOSLOVAK JOURNAL OF PHYSICS 49(11):1583-1589, Listopad 1999. 8th Symposium on Surface Physics, TREST CASTLE, CZECH REPUBLIC, JUN 28-JUL 02, 1999. BibTeX

@article{ ISI:000084165200011,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Blaas, C and Weinberger, P and Bruno, P",
	title = "{Ab-initio theory of the CPP-magnetoconductance}",
	journal = "{CZECHOSLOVAK JOURNAL OF PHYSICS}",
	year = "{1999}",
	volume = "{49}",
	number = "{11}",
	pages = "{1583-1589}",
	month = "{NOV}",
	note = "{8th Symposium on Surface Physics, TREST CASTLE, CZECH REPUBLIC, JUN 28-JUL 02, 1999}",
	organization = "{Acad Sci Czech Republic, Inst Phys; Technolog Fdn Czech Republic}",
	abstract = "{The current-perpendicular-to-plane (CPP) magnetoconductance of a trilayer consisting of a spacer sandwiched between two ideal leads is described on an ab initio level. We employ the transmission matrix formulation of the conductance within the framework of the spin-polarized surface Green function technique as formulated in terms of the tight-binding linear muffin-tin orbital method. The formalism is extended to the case of lateral supercells in each layer with random arrangements of atoms which allows to treat both the ballistic and diffusive transports on equal footing. The application is made to fee-based Co/Cu/Co(001) trilayers.}",
	publisher = "{CZECHOSLOVAK JNL OF PHYSICS}",
	address = "{FYZIKALNI USTAV AV NA SLOVANCE 2, PRAGUE 180 40, CZECH REPUBLIC}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republ, Dept Phys Mat, CZ-61662 Brno, Czech Republic. Vienna Tech Univ, Ctr Computat Mat Sci, A-1060 Vienna, Austria. Max Planck Inst Microstruct Phys, D-06120 Halle, Germany.}",
	doi = "{10.1023/A:1022871831961}",
	issn = "{0011-4626}",
	keywords-plus = "{GIANT MAGNETORESISTANCE}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Bruno P, 1999, J MAGN MAGN MATER, V198-99, P46, DOI 10.1016/S0304-8853(98)00614-3. BUTLER WH, 1995, PHYS REV B, V52, P13339. Cerda J, 1997, PHYS REV B, V56, P15885, DOI 10.1103/PhysRevB.56.15885. Levy PM, 1994, SOLID STATE PHYS, V47, P367, DOI 10.1016/S0081-1947(08)60642-6. Mathon J, 1997, PHYS REV B, V56, P11810, DOI 10.1103/PhysRevB.56.11810. PRATT WP, 1991, PHYS REV LETT, V66, P3060, DOI 10.1103/PhysRevLett.66.3060. Schep KM, 1998, PHYS REV B, V57, P8907, DOI 10.1103/PhysRevB.57.8907. STOVNENG JA, 1994, PHYS REV B, V49, P16494, DOI 10.1103/PhysRevB.49.16494. Turek I., 1997, ELECT STRUCTURE DISO. Weinberger P, 1996, J PHYS-CONDENS MAT, V8, P7677, DOI 10.1088/0953-8984/8/41/013. ZAHN P, 1995, PHYS REV LETT, V75, P3216.}",
	number-of-cited-references = "{11}",
	times-cited = "{5}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Czech. J. Phys.}",
	doc-delivery-number = "{264DN}",
	unique-id = "{ISI:000084165200011}"
}

I Turek. Stability and magnetism of ultrathin Cr films on a Fe(001) substrate. CZECHOSLOVAK JOURNAL OF PHYSICS 49(11):1639-1644, Listopad 1999. 8th Symposium on Surface Physics, TREST CASTLE, CZECH REPUBLIC, JUN 28-JUL 02, 1999. BibTeX

@article{ ISI:000084165200019,
	author = "Turek, I",
	title = "{Stability and magnetism of ultrathin Cr films on a Fe(001) substrate}",
	journal = "{CZECHOSLOVAK JOURNAL OF PHYSICS}",
	year = "{1999}",
	volume = "{49}",
	number = "{11}",
	pages = "{1639-1644}",
	month = "{NOV}",
	note = "{8th Symposium on Surface Physics, TREST CASTLE, CZECH REPUBLIC, JUN 28-JUL 02, 1999}",
	organization = "{Acad Sci Czech Republic, Inst Phys; Technolog Fdn Czech Republic}",
	abstract = "{Itinerant magnetism of ultrathin epitaxial Cr overlayers on a Fe(001) substrate and their energy stability with respect to Cr-Fe interdiffusion were studied by means of ab initio electronic structure calculations. The latter were based on the tight-binding linear muffin-tin orbital method and the coherent potential approximation. The interdiffusion was simulated by two-dimensional substitutionally disordered Cr-Fe alloys formed within two layers at the Cr/Fe interface. For a 1 monolayer Cr film a tendency to surface alloy formation is found in contrast to a 2 monolayer Cr film which seems to be stable with respect to Fe-Cr intermixing. A comparison of the calculated results to recent experimental data is presented and an interplay between the energy stability and magnetism of the films is pointed out.}",
	publisher = "{CZECHOSLOVAK JNL OF PHYSICS}",
	address = "{FYZIKALNI USTAV AV NA SLOVANCE 2, PRAGUE 180 40, CZECH REPUBLIC}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Acad Sci Czech Republ, Dept Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republ, Dept Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1023/A:1022888302827}",
	issn = "{0011-4626}",
	keywords-plus = "{SURFACE; FE(100); IRON}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{Davies A, 1996, PHYS REV LETT, V76, P4175, DOI 10.1103/PhysRevLett.76.4175. Freyss M, 1997, PHYS REV B, V56, P6047, DOI 10.1103/PhysRevB.56.6047. GRUNBERG P, 1986, PHYS REV LETT, V57, P2442, DOI 10.1103/PhysRevLett.57.2442. Mirbt S, 1995, PHYS REV B, V52, P15070, DOI 10.1103/PhysRevB.52.15070. Mirbt S, 1996, PHYS REV B, V54, P6382, DOI 10.1103/PhysRevB.54.6382. Nonas B, 1998, PHYS REV LETT, V80, P4574, DOI 10.1103/PhysRevLett.80.4574. Pfandzelter R, 1996, PHYS REV B, V54, P4496, DOI 10.1103/PhysRevB.54.4496. Turek I, 1998, PHILOS MAG B, V78, P637, DOI 10.1080/13642819808206771. Turek I., 1997, ELECT STRUCTURE DISO. UNGURIS J, 1992, PHYS REV LETT, V69, P1125, DOI 10.1103/PhysRevLett.69.1125. Venus D, 1996, PHYS REV B, V53, pR1733. VOSKO SH, 1980, CAN J PHYS, V58, P1200.}",
	number-of-cited-references = "{12}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Czech. J. Phys.}",
	doc-delivery-number = "{264DN}",
	unique-id = "{ISI:000084165200019}"
}

V Drchal, J Kudrnovsky, P Bruno, I Turek, PH Dederichs and P Weinberger. Temperature dependence of the interlayer exchange coupling in magnetic multilayers: An ab initio approach. PHYSICAL REVIEW B 60(13):9588-9595, 1999. BibTeX

@article{ ISI:000083079200075,
	author = "Drchal, V and Kudrnovsky, J and Bruno, P and Turek, I and Dederichs, PH and Weinberger, P",
	title = "{Temperature dependence of the interlayer exchange coupling in magnetic multilayers: An ab initio approach}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1999}",
	volume = "{60}",
	number = "{13}",
	pages = "{9588-9595}",
	month = "{OCT 1}",
	abstract = "{The temperature dependence of interlayer exchange coupling (IEC) is studied theoretically within the asymptotic theory with preasymptotic corrections included, and by employing an ab initio approach based on the Green function formulation of the IEC. In this paper an efficient method for calculating integrals involving the Fermi-Dirac distribution by representing the occurring integrands by a sum of complex exponentials is discussed. In particular a method which allows us to extract separately the temperature-dependence of the short-period (SPO) and long-period (LPO) oscillations in the case of Co/Cu/Co(001) trilayers from computed values is suggested. Furthermore, a detailed discussion of predictions of asymptotic theory is given. It is found that in the limit of a large spacer thickness N ab initio calculations confirm the results of asymptotic theories for SPO for a variety of trilayer geometries, namely, that the oscillation amplitudes depend on the temperature T as cNT/sinh(cNT). On the other hand, for the case of the LPO this simple form does not apply. We explain this behavior by large preasymptotic corrections necessary for the LPO. The combined effect of the temperature and the disorder in the spacer is also discussed.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Drchal, V (Reprint Author), Acad Sci Czech Republic, Inst Phys, Slovance 2, CZ-18221 Prague 8, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Vienna Univ Technol, Inst Tech Electrochem, A-1060 Vienna, Austria. Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany.}",
	doi = "{10.1103/PhysRevB.60.9588}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{QUANTUM-WELL THEORY; OSCILLATION PERIODS; CO/CU/CO(001); DISORDER; SPACER; FE}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Albert A., 1972, REGRESSION MOOR PENR. ALMEIDA NS, 1995, PHYS REV LETT, V75, P733, DOI 10.1103/PhysRevLett.75.733. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. BRUNO P, 1991, PHYS REV LETT, V67, P2592, DOI 10.1103/PhysRevLett.67.2592. BRUNO P, 1991, PHYS REV LETT, V67, P1602, DOI 10.1103/PhysRevLett.67.1602. BRUNO P, IN PRESS EUR PHYS B. Castro JDE, 1996, PHYS REV B, V53, P13306. Drchal V, 1996, PHYS REV B, V53, P15036, DOI 10.1103/PhysRevB.53.15036. Drchal V, 1998, PHILOS MAG B, V78, P571, DOI 10.1080/13642819808206761. KROMPIEWSKI S, 1993, J MAGN MAGN MATER, V121, P238, DOI 10.1016/0304-8853(93)91195-D. KUDRNOVSKY J, 1991, PHYS REV B, V44, P4068, DOI 10.1103/PhysRevB.44.4068. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. Kudrnovsky J, 1996, PHYS REV B, V54, pR3738. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. LLOYD P, 1972, ADV PHYS, V21, P69, DOI 10.1080/00018737200101268. MARCUS M, 1992, SURVEY MATRIX THEORY, P52. MATHON J, 1995, PHYS REV LETT, V74, P3696, DOI 10.1103/PhysRevLett.74.3696. Mathon J, 1997, PHYS REV B, V56, P11797, DOI 10.1103/PhysRevB.56.11797. MIRBT S, 1993, SOLID STATE COMMUN, V88, P331, DOI 10.1016/0038-1098(93)90519-S. NORDSTROM L, 1994, PHYS REV B, V50, P13058, DOI 10.1103/PhysRevB.50.13058. Turek I., 1997, ELECT STRUCTURE DISO. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923, DOI 10.1103/PhysRevLett.71.1923. Weinberger P, 1997, PHILOS MAG B, V75, P509, DOI 10.1080/13642819708202336. Wildberger K, 1998, PHYS REV B, V58, P13721, DOI 10.1103/PhysRevB.58.13721. 1998, IBM J RES DEV, V42, P1.}",
	number-of-cited-references = "{26}",
	times-cited = "{17}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{244YW}",
	unique-id = "{ISI:000083079200075}"
}

M Sob, I Turek and V Vitek. Application of surface ab initio methods to studies of electronic structure and atomic configuration of interfaces in metallic materials. In P Lejcek and V Paidar (eds.). INTERGRANULAR AND INTERPHASE BOUNDARIES IN MATERIALS, IIB98 294-2. 1999, 17-26. 9th International Conference on Intergranular and Interphase Boundaries in Materials (iib98), PRAGUE, CZECH REPUBLIC, JUL 06-09, 1998. BibTeX

@inproceedings{ ISI:000080081000003,
	author = "Sob, M and Turek, I and Vitek, V",
	editor = "{Lejcek, P and Paidar, V}",
	title = "{Application of surface ab initio methods to studies of electronic structure and atomic configuration of interfaces in metallic materials}",
	booktitle = "{INTERGRANULAR AND INTERPHASE BOUNDARIES IN MATERIALS, IIB98}",
	series = "{Materials Science Forum}",
	year = "{1999}",
	volume = "{294-2}",
	pages = "{17-26}",
	note = "{9th International Conference on Intergranular and Interphase Boundaries in Materials (iib98), PRAGUE, CZECH REPUBLIC, JUL 06-09, 1998}",
	organization = "{Czech Republ Acad Sci Inst Phys; Union Czech Math \& Physicists; European Commiss, DG XII, Sci, Res \& Dev; Off Naval Res Int Field Off - Europe \& European Off Aerosp Res \& Dev; VITKOVICE, a s; AR Tour Ondracek; Magnox Electric, plc; Nucl Res Inst Rez, plc}",
	abstract = "{Surface ab initio electronic structure methods are reviewed and their application to studies of electronic and atomic structure of interfaces in metallic materials is discussed. Examples presented here are electronic structure of the Sigma = 5(210)/{[}001] tilt grain boundary in tungsten, magnetic momenta at the Sigma = 5(310)/{[}001] tilt grain boundary in iron, and magnetic behaviour of Ru and Rh overlayers at the Ag(001) substrate. Versatility and generalization of the Green's function method to include also compositionally disordered systems is emphasized. At the same time it is argued that, depending on the character of the problem, simpler methods such as central force many-body potentials may be sufficient for description and understanding of many phenomena in metallic systems but they have to be linked synergistically with first-principles methods and with experiments.}",
	publisher = "{TRANS TECH PUBLICATIONS LTD}",
	address = "{LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Univ Penn, Dept Mat Sci \& Engn, Philadelphia, PA 19104 USA.}",
	issn = "{0255-5476}",
	isbn = "{0-87849-823-0}",
	keywords = "{electronic structure; atomic configuration; surfaces; interfaces; extended defects; grain boundaries; local density of states; ab initio calculations}",
	keywords-plus = "{TRANSITION-METALS; MINIMIZATION TECHNIQUES; GREEN-FUNCTION; FERROMAGNETISM; MAGNETISM; ENERGY; RH; RECONSTRUCTION; DEPENDENCE; BOUNDARIES}",
	research-areas = "{Materials Science; Metallurgy \& Metallurgical Engineering}",
	web-of-science-categories = "{Materials Science, Ceramics; Materials Science, Multidisciplinary; Metallurgy \& Metallurgical Engineering}",
	researcherid-numbers = "{Sob, Mojmir/D-1936-2012 Turek, Ilja/G-5553-2014 Sob, Mojmir/G-6865-2011}",
	cited-references = "{ALDEN M, 1994, SURF SCI, V315, P157, DOI 10.1016/0039-6028(94)90551-7. ANDERSEN OK, 1992, MATER RES SOC SYMP P, V253, P37. ANDERSEN OK, 1977, PHYSICA B \& C, V86, P249, DOI 10.1016/0378-4363(77)90303-5. ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Andersen O. K., 1986, ELECT BAND STRUCTURE, DOI 10.1007/3540180982\_1. BAGAYOKO D, 1983, PHYS REV B, V28, P5419, DOI 10.1103/PhysRevB.28.5419. BASKES MI, 1992, PHYS REV B, V46, P2727, DOI 10.1103/PhysRevB.46.2727. BLUGEL S, 1995, PHYS REV B, V51, P2025, DOI 10.1103/PhysRevB.51.2025. Bowler DR, 1997, MODEL SIMUL MATER SC, V5, P199, DOI 10.1088/0965-0393/5/3/002. ERCOLESSI F, 1986, SURF SCI, V177, P314, DOI 10.1016/0039-6028(86)90141-X. ERCOLESSI F, 1986, PHYS REV LETT, V57, P719, DOI 10.1103/PhysRevLett.57.719. FINNIS MW, 1984, PHILOS MAG A, V50, P45. FREEMAN AJ, 1991, J MAGN MAGN MATER, V100, P497, DOI 10.1016/0304-8853(91)90837-Z. GARCIAMOLINER F, 1986, PROG SURF SCI, V21, P93, DOI 10.1016/0079-6816(86)90011-0. Garcia-Moliner F., 1992, THEORY SINGLE MULTIP. Gonis A., 1992, GREEN FUNCTIONS ORDE. HAMPEL K, 1993, PHYS REV B, V47, P4810, DOI 10.1103/PhysRevB.47.4810. Harrison W. A., 1989, ELECT STRUCTURE PROP. HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864. Huang S.C., 1994, INTERMETALLIC COMPOU, P73. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. Kohyama M, 1996, MODEL SIMUL MATER SC, V4, P397, DOI 10.1088/0965-0393/4/4/005. Kostlmeier S, 1998, PHYS STATUS SOLIDI A, V166, P417. LIU C, 1991, PHYS REV B, V44, P12062, DOI 10.1103/PhysRevB.44.12062. MACLAREN JM, 1989, PHYS REV B, V40, P12164, DOI 10.1103/PhysRevB.40.12164. METHFESSEL M, 1992, PHYS REV B, V46, P4816, DOI 10.1103/PhysRevB.46.4816. MULHOLLAN GA, 1991, PHYS REV B, V44, P2393, DOI 10.1103/PhysRevB.44.2393. Papanikolaou N, 1997, PHYS REV B, V55, P4157, DOI 10.1103/PhysRevB.55.4157. Parr R. G., 1992, DENSITY FUNCTIONAL T. Paxton AT, 1996, J PHYS D APPL PHYS, V29, P1689, DOI 10.1088/0022-3727/29/7/003. PAYNE MC, 1992, REV MOD PHYS, V64, P1045, DOI 10.1103/RevModPhys.64.1045. Ruggerone P., 1997, GROWTH PROPERTIES UL, P490. SCHMIDT C, 1995, PHYS REV LETT, V75, P2160, DOI 10.1103/PhysRevLett.75.2160. Schmidt C, 1998, PHILOS MAG A, V77, P1161. Siegl R, 1997, PHILOS MAG A, V75, P1447. Sob M., 1997, Nukleonika, V42. SOB M, 1998, TIGHT BINDING APPROA, V491, P79. TUREK I, 1995, PHYS REV LETT, V74, P2551, DOI 10.1103/PhysRevLett.74.2551. Turek I., 1997, ELECT STRUCTURE DISO. VACKAR J, 1998, IN PRESS PHYS REV B, V58. VITEK V, 1996, MRS BULL, V21, P17. Voter A. F., 1995, INTERMETALLIC COMPOU, V1, P77. WEINERT M, 1982, PHYS REV B, V26, P4571, DOI 10.1103/PhysRevB.26.4571. WEINERT M, 1994, MAGNETIC MULTILAYERS, P51. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009. WIMMER E, 1981, PHYS REV B, V24, P864, DOI 10.1103/PhysRevB.24.864. Wimmer E, 1997, J PHYS IV, V7, P75, DOI 10.1051/jp4:1997607. WITTEN JL, 1996, SURF SCI REP, V24, P55. YAMAGUCHI M, 1990, MET TECHNOL, V60, P34. YESILLETEN D, IN PRESS. ZHANG XG, 1989, PHYS REV B, V40, P3694, DOI 10.1103/PhysRevB.40.3694.}",
	number-of-cited-references = "{52}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	doc-delivery-number = "{BM90M}",
	unique-id = "{ISI:000080081000003}"
}

I Turek, J Kudrnovsky and S Blugel. Surface magnetism of disordered alloys. ACTA PHYSICA SLOVACA 48(6):723-726, Prosinec 1998. BibTeX

@article{ ISI:000077972000031,
	author = "Turek, I and Kudrnovsky, J and Blugel, S",
	title = "{Surface magnetism of disordered alloys}",
	journal = "{ACTA PHYSICA SLOVACA}",
	year = "{1998}",
	volume = "{48}",
	number = "{6}",
	pages = "{723-726}",
	month = "{DEC}",
	abstract = "{We review recent results of ab initio electronic structure calculations for magnetic surfaces of substitutionally disordered transition-metal alloys in the bcc structure. Emphasis is put on a surface enhancement of local magnetic moments and a possibility of magnetic surfaces of nonmagnetic bulk alloys.}",
	publisher = "{SLOVAK ACAD SCIENCES INST PHYSICS}",
	address = "{DUBRAVSKA CESTA 9, 842 28 BRATISLAVA, SLOVAKIA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), AS CR, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. AS CR, Inst Phys Mat, CZ-61662 Brno, Czech Republic. AS CR, Inst Phys, CZ-18221 Prague 8, Czech Republic. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany.}",
	issn = "{0323-0465}",
	keywords-plus = "{ELECTRONIC-STRUCTURE}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Blugel, Stefan/J-8323-2013 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Blugel, Stefan/0000-0001-9987-4733 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. DEDERICHS PH, 1991, J MAGN MAGN MATER, V100, P241, DOI 10.1016/0304-8853(91)90823-S. FREEMAN AJ, 1991, J MAGN MAGN MATER, V100, P497, DOI 10.1016/0304-8853(91)90837-Z. OHNISHI S, 1985, J MAGN MAGN MATER, V50, P161, DOI 10.1016/0304-8853(85)90177-5. Turek I, 1996, NATO ADV SCI INST SE, V355, P431. Turek I, 1998, PHYS REV B, V57, P11065. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200.}",
	number-of-cited-references = "{8}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Acta Phys. Slovaca}",
	doc-delivery-number = "{155XP}",
	unique-id = "{ISI:000077972000031}"
}

I Turek, P Weinberger, M Freyss, D Stoeffler and H Dreysse. Cr-Fe surface alloy on Fe substrate: CPA-TB-LMTO and semi-empirical TB calculations. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES 78(5-6):637-642, 1998. BibTeX

@article{ ISI:000077427300035,
	author = "Turek, I and Weinberger, P and Freyss, M and Stoeffler, D and Dreysse, H",
	title = "{Cr-Fe surface alloy on Fe substrate: CPA-TB-LMTO and semi-empirical TB calculations}",
	journal = "{PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES}",
	year = "{1998}",
	volume = "{78}",
	number = "{5-6}",
	pages = "{637-642}",
	month = "{NOV-DEC}",
	abstract = "{We present results of LSDA electronic structure calculations for the initial growth stage of epitaxial Cr overlayers on a ferromagnetic Fe(001) substrate in the presence of interdiffusion at the Cr/Fe interface. The interfacial interdiffusion is simulated by a two-dimensional substitutionally disordered alloy and the corresponding self-consistent electronic structure is obtained within the tight-binding linear muffin-tin orbital (TB-LMTO) method and the coherent-potential approximation (CPA). We analyse the total energies of different solutions of the LSDA-CPA problem and discuss several topics relevant to the Cr/Fe system, e.g. segregation tendencies for ultra-thin Cr films and a magnetic pi phase shift for thicker Cr films. A comparison of the ab initio results to a semiempirical tight-binding theory and experiment is presented as well.}",
	publisher = "{TAYLOR \& FRANCIS LTD}",
	address = "{ONE GUNPOWDER SQUARE, LONDON EC4A 3DE, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Turek, I (Reprint Author), Ctr Computat Mat Sci, Gumpendorferstr 1A, A-1060 Vienna, Austria. Ctr Computat Mat Sci, A-1060 Vienna, Austria. Inst Phys \& Chim Mat Strasbourg, F-67037 Strasbourg, France.}",
	doi = "{10.1080/13642819808206771}",
	issn = "{0141-8637}",
	keywords-plus = "{CR/FE(001)}",
	research-areas = "{Materials Science; Mechanics; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mechanics; Physics, Applied; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Stoeffler, Daniel/I-1145-2016}",
	cited-references = "{BRUNO P, 1991, PHYS REV LETT, V67, P1602, DOI 10.1103/PhysRevLett.67.1602. DREYSSE H, 1998, IN PRESS MRS SPRING. DUCASTELLE F, 1992, ORDER PHASE STABILIT. Freyss M, 1997, PHYS REV B, V56, P6047, DOI 10.1103/PhysRevB.56.6047. GRUNBERG P, 1986, PHYS REV LETT, V57, P2442, DOI 10.1103/PhysRevLett.57.2442. Nonas B, 1998, PHYS REV LETT, V80, P4574, DOI 10.1103/PhysRevLett.80.4574. Parkin S. S. P., 1990, PHYS REV LETT, V64, P2302. Stoeffler D, 1995, MATER RES SOC SYMP P, V384, P247. Turek I., 1997, ELECT STRUCTURE DISO. UNGURIS J, 1992, PHYS REV LETT, V69, P1125, DOI 10.1103/PhysRevLett.69.1125. Wille LT, 1998, PHILOS MAG B, V78, P643, DOI 10.1080/13642819808206772.}",
	number-of-cited-references = "{11}",
	times-cited = "{8}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop.}",
	doc-delivery-number = "{146KF}",
	unique-id = "{ISI:000077427300035}"
}

I Turek, S Blugel and J Kudrnovsky. Magnetic nature of (100)surfaces of bcc RuV, RhV, and PdV binary alloys. PHYSICAL REVIEW B 57(18):R11065-R11068, 1998. BibTeX

@article{ ISI:000073585200013,
	author = "Turek, I and Blugel, S and Kudrnovsky, J",
	title = "{Magnetic nature of (100)surfaces of bcc RuV, RhV, and PdV binary alloys}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1998}",
	volume = "{57}",
	number = "{18}",
	pages = "{R11065-R11068}",
	month = "{MAY 1}",
	abstract = "{Based on ab initio calculations we predict that the (100) surfaces of the RuV, RhV and PdV binary alloys in the bcc structure are magnetic over a broad concentration range although they are nonmagnetic in the bulk and the metals V, Ru, Rh, and Pd are nonmagnetic in the bulk and at the surface. We find that the magnetic moment is basically located at the V site in the surface plane of the alloys and the V moment can be as large as about 1 mu(B) for an alloy with 75\% V concentration. The origin of the surface magnetism is traced back to a surface state of V(100), which becomes occupied due to alloying. Additional nonmagnetic alloys with magnetic surfaces are suggested.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{ASCR, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. ASCR, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Acad Sci Czech Republic, Inst Phys, CZ-18040 Prague, Czech Republic.}",
	doi = "{10.1103/PhysRevB.57.R11065}",
	issn = "{2469-9950}",
	eissn = "{2469-9969}",
	keywords-plus = "{TRANSITION-METAL MONOLAYERS; RH(001) SURFACE; ELECTRONIC-STRUCTURE; FERROMAGNETISM; 4D; 3D; OVERLAYERS; PD(001); AG(001); AG}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 }",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. BLUGEL S, 1989, APPL PHYS A-MATER, V49, P547, DOI 10.1007/BF00616980. BLUGEL S, 1988, EUROPHYS LETT, V7, P743, DOI 10.1209/0295-5075/7/8/013. BLUGEL S, 1992, EUROPHYS LETT, V18, P257, DOI 10.1209/0295-5075/18/3/012. BLUGEL S, 1992, PHYS REV LETT, V68, P851, DOI 10.1103/PhysRevLett.68.851. BLUGEL S, 1995, PHYS REV B, V51, P2025, DOI 10.1103/PhysRevB.51.2025. BLUGEL S, 1989, EUROPHYS LETT, V9, P597, DOI 10.1209/0295-5075/9/6/018. BLUGEL S, 1992, SOLID STATE COMMUN, V84, P621, DOI 10.1016/0038-1098(92)90203-L. Cho JH, 1997, PHYS REV LETT, V78, P1299, DOI 10.1103/PhysRevLett.78.1299. ERIKSSON O, 1991, PHYS REV LETT, V66, P1350, DOI 10.1103/PhysRevLett.66.1350. FREEMAN AJ, 1991, J MAGN MAGN MATER, V100, P497, DOI 10.1016/0304-8853(91)90837-Z. JENSEN V, 1982, SURF SCI, V116, P66, DOI 10.1016/0039-6028(82)90679-3. Massalski T. B., 1986, BINARY ALLOY PHASE D. MIEDEMA AR, 1978, Z METALLKD, V69, P455. MORRISON I, 1993, PHYS REV LETT, V71, P1083, DOI 10.1103/PhysRevLett.71.1083. OHNISHI S, 1985, J MAGN MAGN MATER, V50, P161, DOI 10.1016/0304-8853(85)90177-5. Stepanyuk VS, 1996, PHYS REV B, V53, P2121, DOI 10.1103/PhysRevB.53.2121. TUREK I, 1995, PHYS REV LETT, V74, P2551, DOI 10.1103/PhysRevLett.74.2551. Turek I., 1997, ELECT STRUCTURE DISO. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WEINERT M, 1993, PHYS REV LETT, V71, P4097, DOI 10.1103/PhysRevLett.71.4097. WU SC, 1994, PHYS REV B, V49, P14081, DOI 10.1103/PhysRevB.49.14081. ZHU MJ, 1991, PHYS REV B, V43, P4007, DOI 10.1103/PhysRevB.43.4007. ZHU MJ, 1990, PHYS REV B, V42, P2874, DOI 10.1103/PhysRevB.42.2874.}",
	number-of-cited-references = "{24}",
	times-cited = "{4}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{ZM876}",
	unique-id = "{ISI:000073585200013}"
}

J Kudrnovsky, V Drchal, P Bruno, I Turek and P Weinberger. Oscillatory behavior of interface exchange coupling caused by finite caps of variable thickness. COMPUTATIONAL MATERIALS SCIENCE 10(1-4):188-197, Únor 1998. Symposium on Computational Modeling of Issues in Materials Science at the International Conference on Applied Materials / European-Materials-Research-Society Meeting, STRASBOURG, FRANCE, JUN 16-20, 1997. BibTeX

@article{ ISI:000072663900035,
	author = "Kudrnovsky, J and Drchal, V and Bruno, P and Turek, I and Weinberger, P",
	title = "{Oscillatory behavior of interface exchange coupling caused by finite caps of variable thickness}",
	journal = "{COMPUTATIONAL MATERIALS SCIENCE}",
	year = "{1998}",
	volume = "{10}",
	number = "{1-4}",
	pages = "{188-197}",
	month = "{FEB}",
	note = "{Symposium on Computational Modeling of Issues in Materials Science at the International Conference on Applied Materials / European-Materials-Research-Society Meeting, STRASBOURG, FRANCE, JUN 16-20, 1997}",
	organization = "{European Mat Res Soc}",
	abstract = "{The effect of non-magnetic cap-layers on the periods and the amplitudes of the oscillations of interlayer exchange coupling (IEC) is studied theoretically using an ab initio spin-polarized surface Green function technique within a tight-binding linear muffin-tin orbital method and the Lloyd formulation of the IEC. Applications are made to the free-electron like model as well as to Co/Cu/Co(0 0 1) trilayers with a cap interfacing vacuum through the dipole barrier. The results are analyzed in terms of a discrete two-dimensional Fourier transformation which confirms a pronounced oscillatory behavior of the IEC with respect to the thickness of the cap-and the spacer-layers. The results are in agreement with available experimental data as well as with predictions of the electron confinement model of the IEC. Copyright (C) 1998 Elsevier Science B.V.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), Acad Sci Czech Republ, Inst Phys, Na Slovance 2, CZ-18040 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18040 Prague 8, Czech Republic. Vienna Tech Univ, Inst Tech Elektrochem, A-1060 Vienna, Austria. Univ Paris 11, Inst Elect Fondamentale, CNRS, URA 22, F-91405 Orsay, France. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	doi = "{10.1016/S0927-0256(97)00097-9}",
	issn = "{0927-0256}",
	keywords-plus = "{LAYER THICKNESS; INTERLAYER}",
	research-areas = "{Materials Science}",
	web-of-science-categories = "{Materials Science, Multidisciplinary}",
	author-email = "{
 Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript
 }",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{Andersen O. K., 1985, HIGHLIGHTS CONDENSED. Barnas J, 1996, PHYS REV B, V54, P12332, DOI 10.1103/PhysRevB.54.12332. Bounouh A, 1996, EUROPHYS LETT, V33, P315, DOI 10.1209/epl/i1996-00339-6. BRUNO P, 1993, J MAGN MAGN MATER, V121, P248, DOI 10.1016/0304-8853(93)91197-F. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. Bruno P, 1996, J MAGN MAGN MATER, V164, P27, DOI 10.1016/S0304-8853(96)00366-6. DEVRIES JJ, 1995, PHYS REV LETT, V75, P4306. Drchal V, 1996, PHYS REV B, V53, P15036, DOI 10.1103/PhysRevB.53.15036. EDWARDS DM, 1991, PHYS REV LETT, V67, P493, DOI 10.1103/PhysRevLett.67.493. KUDRNOVSKY J, 1991, PHYS REV B, V44, P4068, DOI 10.1103/PhysRevB.44.4068. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. Kudrnovsky J, 1996, PHYS REV B, V53, P5125, DOI 10.1103/PhysRevB.53.5125. Kudrnovsky J, 1996, PHYS REV B, V54, pR3738. OKUNO SN, 1995, J PHYS SOC JPN, V64, P3631, DOI 10.1143/JPSJ.64.3631. STILES MD, 1993, PHYS REV B, V48, P7238, DOI 10.1103/PhysRevB.48.7238.}",
	number-of-cited-references = "{16}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Comput. Mater. Sci.}",
	doc-delivery-number = "{ZD225}",
	unique-id = "{ISI:000072663900035}"
}

O Schneeweiss, I Turek, J Cermak and P Lejcek. Properties of iron atoms at grain boundaries in Fe and Fe72Al28. In Y Mishin, G Vogl, N Cowern, R Catlow and D Farkas (eds.). DIFFUSION MECHANISMS IN CRYSTALLINE MATERIALS 527. 1998, 273-278. Materials-Research-Society Symposium on Diffusion Mechanisms in Crystalline Materials at the MRS Spring Meeting, SAN FRANCISCO, CA, APR 13-17, 1998. BibTeX

@inproceedings{ ISI:000075974200033,
	author = "Schneeweiss, O and Turek, I and Cermak, J and Lejcek, P",
	editor = "{Mishin, Y and Vogl, G and Cowern, N and Catlow, R and Farkas, D}",
	title = "{Properties of iron atoms at grain boundaries in Fe and Fe72Al28}",
	booktitle = "{DIFFUSION MECHANISMS IN CRYSTALLINE MATERIALS}",
	series = "{MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS}",
	year = "{1998}",
	volume = "{527}",
	pages = "{273-278}",
	note = "{Materials-Research-Society Symposium on Diffusion Mechanisms in Crystalline Materials at the MRS Spring Meeting, SAN FRANCISCO, CA, APR 13-17, 1998}",
	organization = "{Mat Res Soc; Avant Corp, TCAD Business Unit; Virginia Polytech Inst}",
	abstract = "{Location of diffused Co-57 atoms in single crystals, bicrystals and polycrystals of pure iron and Fe72Al28 alloy were investigated by means of emission Mossbauer spectroscopy. To interpret the results, first principles calculations of iron atom magnetic moments and hyperfine field were carried out. From comparison of Mossbauer spectra of single crystals with those of bicrystals and polycrystals, an information about grain boundary positions occupied by diffusing atoms is obtained. It is shown that about 5\% of the diffusing atoms at the \{112\} grain boundary of iron are located at the positions either having impurity atoms in the nearest neighbourhood or characterized by larger atomic spacing in comparison with the bulk. In the Fe72Al28 a dominating portion of diffusing atoms have different surrounding than in grain volume. An enrichment of grain boundaries by aluminum could explain their hyperfine parameters.}",
	publisher = "{MATERIALS RESEARCH SOCIETY}",
	address = "{506 KEYSTONE DRIVE, WARRENDALE, PA 15088-7563 USA}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Schneeweiss, O (Reprint Author), AS CR, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. AS CR, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	issn = "{0272-9172}",
	isbn = "{1-55899-433-5}",
	research-areas = "{Materials Science; Metallurgy \& Metallurgical Engineering; Physics}",
	web-of-science-categories = "{Materials Science, Ceramics; Materials Science, Multidisciplinary; Metallurgy \& Metallurgical Engineering; Physics, Condensed Matter}",
	researcherid-numbers = "{Schneeweiss, Oldrich/F-7841-2014 Cermak, Jiri/G-1541-2014 Turek, Ilja/G-5553-2014}",
	number-of-cited-references = "{0}",
	times-cited = "{5}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{BL60E}",
	unique-id = "{ISI:000075974200033}"
}

V Drchal, J Kudrnovsky, A Pasturel, I Turek, P Weinberger, A Gonis and PEA Turchi. Effective interatomic interactions via the TB-LMTO method. In PEA Turchi, A Gonis and L Colombo (eds.). TIGHT-BINDING APPROACH TO COMPUTATIONAL MATERIALS SCIENCE 491. 1998, 65-78. Symposium on Tight-Binding Approach to Computational Materials Science at the 1997 MRS Fall Meeting, BOSTON, MA, DEC 01-03, 1997. BibTeX

@inproceedings{ ISI:000073689900005,
	author = "Drchal, V and Kudrnovsky, J and Pasturel, A and Turek, I and Weinberger, P and Gonis, A and Turchi, PEA",
	editor = "{Turchi, PEA and Gonis, A and Colombo, L}",
	title = "{Effective interatomic interactions via the TB-LMTO method}",
	booktitle = "{TIGHT-BINDING APPROACH TO COMPUTATIONAL MATERIALS SCIENCE}",
	series = "{MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS}",
	year = "{1998}",
	volume = "{491}",
	pages = "{65-78}",
	note = "{Symposium on Tight-Binding Approach to Computational Materials Science at the 1997 MRS Fall Meeting, BOSTON, MA, DEC 01-03, 1997}",
	organization = "{CNR, Grp Nazl Struttura Mat; Ente Nazl Nuoue Technol Energia Ed Ambiente; Hewlett Packard Lab, Palo Alto; Lawrence Livermore Natl Lab; Max Planck Inst Festkorperforsch, Stuttgart; Mat Res Soc; USN, Off Naval Res; Univ Milan, Dept Mat Sci}",
	abstract = "{The energetics of metallic alloys, their surfaces or interfaces, and magnetic multilayers is studied in terms of effective interatomic (or interlayer) interactions that are determined from ab initio electronic structure calculations using the TB-LMTO method combined with the coherent potential approximation and the method of surface Green functions. First the theoretical background (force theorem, Lloyd formula, generalized perturbation method for bulk and surfaces, vertex cancellation theorem, method of infinitesimal rotations) is discussed, and then the applications to the phase stability of bulk alloys, surface segregation in disordered alloys, magnetism-induced ordering in two-and three-dimensional systems, phase diagram of two-dimensional alloys, interlayer exchange coupling in metallic multilayers, and the construction of Heisenberg-like Hamiltonians for magnetic systems are presented.}",
	publisher = "{MATERIALS RESEARCH SOCIETY}",
	address = "{506 KEYSTONE DRIVE, WARRENDALE, PA 15088-7563 USA}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Drchal, V (Reprint Author), Acad Sci Czech Republ, Inst Phys, Na Slovance 2, CZ-18040 Prague 8, Czech Republic. Acad Sci Czech Republ, Inst Phys, CZ-18040 Prague 8, Czech Republic.}",
	issn = "{0272-9172}",
	isbn = "{1-55899-396-7}",
	research-areas = "{Materials Science; Mathematics; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mathematics, Applied; Physics, Multidisciplinary; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417}",
	number-of-cited-references = "{0}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{BK86F}",
	unique-id = "{ISI:000073689900005}"
}

M Sob, I Turek and V Vitek. Electronic structure and atomic configuration of extended defects in metals by first-principles and semiempirical TB-LMTO methods. In PEA Turchi, A Gonis and L Colombo (eds.). TIGHT-BINDING APPROACH TO COMPUTATIONAL MATERIALS SCIENCE 491. 1998, 79-90. Symposium on Tight-Binding Approach to Computational Materials Science at the 1997 MRS Fall Meeting, BOSTON, MA, DEC 01-03, 1997. BibTeX

@inproceedings{ ISI:000073689900006,
	author = "Sob, M and Turek, I and Vitek, V",
	editor = "{Turchi, PEA and Gonis, A and Colombo, L}",
	title = "{Electronic structure and atomic configuration of extended defects in metals by first-principles and semiempirical TB-LMTO methods}",
	booktitle = "{TIGHT-BINDING APPROACH TO COMPUTATIONAL MATERIALS SCIENCE}",
	series = "{MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS}",
	year = "{1998}",
	volume = "{491}",
	pages = "{79-90}",
	note = "{Symposium on Tight-Binding Approach to Computational Materials Science at the 1997 MRS Fall Meeting, BOSTON, MA, DEC 01-03, 1997}",
	organization = "{CNR, Grp Nazl Struttura Mat; Ente Nazl Nuoue Technol Energia Ed Ambiente; Hewlett Packard Lab, Palo Alto; Lawrence Livermore Natl Lab; Max Planck Inst Festkorperforsch, Stuttgart; Mat Res Soc; USN, Off Naval Res; Univ Milan, Dept Mat Sci}",
	abstract = "{We present two tight-binding linear muffin-tin orbitals (TB-LMTO) techniques for electronic structure calculations of extended defects (such as grain boundaries, interphase interfaces, surface layers etc.) in metals. The first is based on the first-principles self-consistent surface Green's function approach within the atomic-sphere approximation (ASA) utilizing two-dimensional periodicity in the layers parallel to the interface. In the second approach the Hamiltonian is constructed within the TB-LMTO-ASA as well, but semiempirical terms are employed to characterize the repulsive part of the interaction and the effect of electrons in interstitial space. While the adjustable parameters have only been fitted to the properties of ideal ground state structure, the semiempirical approach describes correctly the structural energy differences, phonon frequencies etc. Two examples are presented: the electronic structure of the Sigma = 5(210)/{[}001] tilt grain boundary in tungsten is determined and the sensitivity of 4d magnetic moments in thin films to local environment is discussed. A comparison of the semiempirical TB-LMTO-ASA with the first-principles full-potential LMTO results is performed along the trigonal deformation path connecting the bcc, simple cubic and fee structures and the applicability of the semiempirical approach for simulating atomic structure of extended defects is assessed.}",
	publisher = "{MATERIALS RESEARCH SOCIETY}",
	address = "{506 KEYSTONE DRIVE, WARRENDALE, PA 15088-7563 USA}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{Sob, M (Reprint Author), Acad Sci Czech Republ, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republ, Inst Phys Mat, CZ-61662 Brno, Czech Republic.}",
	issn = "{0272-9172}",
	isbn = "{1-55899-396-7}",
	research-areas = "{Materials Science; Mathematics; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mathematics, Applied; Physics, Multidisciplinary; Physics, Condensed Matter}",
	researcherid-numbers = "{Sob, Mojmir/D-1936-2012 Turek, Ilja/G-5553-2014 Sob, Mojmir/G-6865-2011}",
	number-of-cited-references = "{0}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{1}",
	doc-delivery-number = "{BK86F}",
	unique-id = "{ISI:000073689900006}"
}

J Kudrnovsky, V Drchal, P Bruno, I Turek and P Weinberger. Interlayer exchange coupling: Effect of the cap. PHYSICAL REVIEW B 56(14):8919-8927, 1997. BibTeX

@article{ ISI:A1997YC73100061,
	author = "Kudrnovsky, J and Drchal, V and Bruno, P and Turek, I and Weinberger, P",
	title = "{Interlayer exchange coupling: Effect of the cap}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1997}",
	volume = "{56}",
	number = "{14}",
	pages = "{8919-8927}",
	month = "{OCT 1}",
	abstract = "{The effect of nonmagnetic cap layers on the periods, amplitudes, and phases of the oscillations of the interlayer exchange coupling (IEC) is studied theoretically using ab initio methods. We employ the spin-polarized surface Green function technique within a tight-binding linear muffin-tin orbital method and the Lloyd formulation of the IEC. Application is made to Co/Cu/Co(001) trilayers with a Cu cap interfacing vacuum through the dipole barrier. We investigate in detail both an asymmetric case with one semi-infinite Co slab and the other Co slab being five monolayers thick and a symmetric case with Co slabs of monolayer thickness. In all cases we have found a pronounced oscillatory behavior of the amplitudes and the phases of the IEC oscillations as a function of the thickness of the cap. The case of different spacer and cap materials is also studied. The results for different spacer and different cap thicknesses are analyzed in terms of a discrete Fourier transformation as well as in real space, and found to confirm predictions by the electron confinement model on an ab initio level.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), ACAD SCI CZECH REPUBL,INST PHYS,NA SLOVANCE 2,CZ-18040 PRAGUE 8,CZECH REPUBLIC. VIENNA TECH UNIV,INST TECH ELEKTROCHEM,A-1060 VIENNA,AUSTRIA. UNIV PARIS 11,CNRS URA 22,INST ELECT FONDAMENTALE,F-91405 ORSAY,FRANCE.}",
	doi = "{10.1103/PhysRevB.56.8919}",
	issn = "{0163-1829}",
	keywords-plus = "{OSCILLATORY BEHAVIOR; LAYER THICKNESS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{Barnas J, 1996, PHYS REV B, V54, P12332, DOI 10.1103/PhysRevB.54.12332. Bounouh A, 1996, EUROPHYS LETT, V33, P315, DOI 10.1209/epl/i1996-00339-6. BRUNO P, 1993, J MAGN MAGN MATER, V121, P248, DOI 10.1016/0304-8853(93)91197-F. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. Bruno P, 1997, J MAGN MAGN MATER, V165, P128, DOI 10.1016/S0304-8853(96)00487-8. Bruno P, 1996, J MAGN MAGN MATER, V164, P27, DOI 10.1016/S0304-8853(96)00366-6. DEVRIES JJ, 1995, PHYS REV LETT, V75, P4306. Drchal V, 1996, PHYS REV B, V53, P15036, DOI 10.1103/PhysRevB.53.15036. EDWARDS DM, 1991, PHYS REV LETT, V67, P493, DOI 10.1103/PhysRevLett.67.493. HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S, V2. KUDRNOVSKY J, 1991, PHYS REV B, V44, P4068, DOI 10.1103/PhysRevB.44.4068. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. Kudrnovsky J, 1996, PHYS REV B, V53, P5125, DOI 10.1103/PhysRevB.53.5125. Kudrnovsky J, 1996, PHYS REV B, V54, pR3738. OKUNO SN, 1995, J PHYS SOC JPN, V64, P3631, DOI 10.1143/JPSJ.64.3631. STILES MD, 1993, PHYS REV B, V48, P7238, DOI 10.1103/PhysRevB.48.7238. Turek I., 1997, ELECT STRUCTURE DISO.}",
	number-of-cited-references = "{18}",
	times-cited = "{19}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{6}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{YC731}",
	unique-id = "{ISI:A1997YC73100061}"
}

P Weinberger, I Turek and L Szunyogh. The TB-LMTO method and its relation to the screened KKR method. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 63(1):165-188, 1997. BibTeX

@article{ ISI:A1997WV73500019,
	author = "Weinberger, P and Turek, I and Szunyogh, L",
	title = "{The TB-LMTO method and its relation to the screened KKR method}",
	journal = "{INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY}",
	year = "{1997}",
	volume = "{63}",
	number = "{1}",
	pages = "{165-188}",
	month = "{MAY 15}",
	abstract = "{The main formal aspects of the TB-LMTO and the screened KKR method are reviewed in terms of multiple scattering theory (scattered wave method) as based on a general reference medium. In terms of the corresponding Green's functions, a comparison is made between these two approaches listing similarities and differences and advantages and disadvantages. (C) 1997 John Wiley \& Sons, Inc.}",
	publisher = "{WILEY-BLACKWELL}",
	address = "{111 RIVER ST, HOBOKEN 07030-5774, NJ USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Weinberger, P (Reprint Author), CTR COMPUTAT MAT SCI, VIENNA, AUSTRIA. VIENNA TECH UNIV, INST TECH ELECTROCHEM, A-1040 VIENNA, AUSTRIA. ACAD SCI CZECH REPUBL, INST PHYS MAT, BRNO, CZECH REPUBLIC. TECH UNIV BUDAPEST, INST PHYS, H-1521 BUDAPEST, HUNGARY.}",
	doi = "{10.1002/(SICI)1097-461X(1997)63:1<165::AID-QUA19>3.0.CO;2-B}",
	issn = "{0020-7608}",
	keywords-plus = "{MULTIPLE-SCATTERING THEORY; GREEN-FUNCTION; SURFACES; ORBITALS; DENSITY; ALLOYS}",
	research-areas = "{Chemistry; Mathematics; Physics}",
	web-of-science-categories = "{Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular \& Chemical}",
	researcherid-numbers = "{Szunyogh, Laszlo/A-7956-2010 Turek, Ilja/G-5553-2014}",
	cited-references = "{Abramowitz M, HDB MATH FUNCTIONS. ANDERSEN OK, 1971, PHYS REV B, V4, P1064, DOI 10.1103/PhysRevB.4.1064. ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. ANDERSEN OK, 1986, PHYS REV B, V34, P5253, DOI 10.1103/PhysRevB.34.5253. ANDERSEN OK, 1973, MOL PHYS, V26, P905, DOI 10.1080/00268977300102171. ANDERSEN OK, 1994, METHODS ELECT STRUCT. Andersen O. K., 1971, COMPUTATIONAL METHOD. Andersen O. K., 1985, HIGHLIGHTS CONDENSED. ANDERSEN OK, 1992, MRS S P, V291. Andersen O. K., 1986, ELECT BAND STRUCTURE, DOI 10.1007/3540180982\_1. BRASPENNING PJ, 1994, PHYS REV B, V49, P10222, DOI 10.1103/PhysRevB.49.10222. CONNOLLY JW, 1971, CHEM PHYS LETT, V10, P616, DOI 10.1016/0009-2614(71)87050-1. DRCHAL V, 1994, PHYS REV B, V50, P7903, DOI 10.1103/PhysRevB.50.7903. EBERT H, 1988, PHYS REV B, V38, P9390, DOI 10.1103/PhysRevB.38.9390. FAULKNER JS, 1988, PHYS REV B, V38, P1686, DOI 10.1103/PhysRevB.38.1686. FAULKNER JS, 1982, PROG MATER SCI, V27, P1, DOI 10.1016/0079-6425(82)90005-6. Gonis A., 1992, GREEN FUNCTIONS ORDE. Gyorffy B L, 1973, BAND STRUCTURE SPECT. JOHNSON KH, 1966, J CHEM PHYS, V45, P3085, DOI 10.1063/1.1728065. JOHNSON KH, 1971, INT J QUANTUM CHEM, V4, P153. KASOWSKI RV, 1972, SOLID STATE COMMUN, V11, P799, DOI 10.1016/0038-1098(72)90274-8. KASTERIN N, 1897, P AMST, V6, P460. KOHN W, 1954, PHYS REV, V94, P1111, DOI 10.1103/PhysRev.94.1111. KOLLAR J, 1992, J PHYS-CONDENS MAT, V4, P5391, DOI 10.1088/0953-8984/4/24/008. KORRINGA J, 1947, PHYSICA, V13, P392, DOI 10.1016/0031-8914(47)90013-X. LLOYD P, 1972, ADV PHYS, V21, P69, DOI 10.1080/00018737200101268. LODDER A, 1994, PHYS REV B, V49, P10215, DOI 10.1103/PhysRevB.49.10215. LODDER A, 1996, PHYS REV B, V49, P10206. Skriver H., 1984, LMTO METHOD. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. SMITH FC, 1969, PHYS REV LETT, V22, P1168, DOI 10.1103/PhysRevLett.22.1168. SOB M, 1988, Z PHYS CHEM NEUE FOL, V157, P515. SOB M, 1985, J PHYS F MET PHYS, V15, P577. SOMMERS C, 1969, PHYS REV, V188, P3. SOVEN P, 1970, PHYS REV B, V2, P4715, DOI 10.1103/PhysRevB.2.4715. SZUNYOGH L, 1994, PHYS REV B, V49, P2721, DOI 10.1103/PhysRevB.49.2721. SZUNYOGH L, 1995, PHYS REV B, V51, P9552, DOI 10.1103/PhysRevB.51.9552. SZUNYOGH L, 1994, J PHYS-CONDENS MAT, V6, P3301, DOI 10.1088/0953-8984/6/18/006. VELICKY B, 1968, PHYS REV, V175, P747, DOI 10.1103/PhysRev.175.747. Weinberger P., 1990, ELECT SCATTERING THE. WEINBERGER P, 1975, INT REV SCI PHYSICAL, V2. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009. ZELLER R, 1995, PHYS REV B, V52, P8807, DOI 10.1103/PhysRevB.52.8807. Ziesche P., 1983, ERGEBNISSE ELEKTRONE.}",
	number-of-cited-references = "{45}",
	times-cited = "{12}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Int. J. Quantum Chem.}",
	doc-delivery-number = "{WV735}",
	unique-id = "{ISI:A1997WV73500019}"
}

J Kudrnovsky, V Drchal, I Turek and P Weinberger. Interlayer exchange coupling: Effect of alloying. COMPUTATIONAL MATERIALS SCIENCE 8(1-2):87-91, Květen 1997. Joint NFS/CNRS Workshop on Alloy Theory, STRASBOURG, FRANCE, OCT 11-15, 1996. BibTeX

@article{ ISI:A1997XE91000013,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Weinberger, P",
	title = "{Interlayer exchange coupling: Effect of alloying}",
	journal = "{COMPUTATIONAL MATERIALS SCIENCE}",
	year = "{1997}",
	volume = "{8}",
	number = "{1-2}",
	pages = "{87-91}",
	month = "{MAY}",
	note = "{Joint NFS/CNRS Workshop on Alloy Theory, STRASBOURG, FRANCE, OCT 11-15, 1996}",
	organization = "{NFS; CNRS}",
	abstract = "{The effect of alloying and partial order in magnetic layers on periods, amplitudes, and phases of oscillations of interlayer exchange coupling (IEC) in magnetic multilayers is studied theoretically on ab initio level. We employ the spin-polarized surface Green function technique within the tight-binding linear muffin-tin orbital method and the Lloyd formulation of the IEC. The coherent potential approximation is used to describe the effect of alloying and of partial order. Numerical results illustrating the theory are presented.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), ACAD SCI CZECH REPUBL,INST PHYS,NA SLOVANCE 2,CZ-18040 PRAGUE 8,CZECH REPUBLIC. TECH UNIV VIENNA,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA. ACAD SCI CZECH REPUBL,INST PHYS MAT,CZ-61662 BRNO,CZECH REPUBLIC.}",
	doi = "{10.1016/S0927-0256(97)00020-7}",
	issn = "{0927-0256}",
	keywords-plus = "{MULTILAYERS; FE; CU}",
	research-areas = "{Materials Science}",
	web-of-science-categories = "{Materials Science, Multidisciplinary}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. Drchal V, 1996, PHYS REV B, V53, P15036, DOI 10.1103/PhysRevB.53.15036. JOHNSON MT, 1995, PHYS REV LETT, V75, P4686, DOI 10.1103/PhysRevLett.75.4686. KROMPIEWSKI S, 1993, J MAGN MAGN MATER, V121, P238, DOI 10.1016/0304-8853(93)91195-D. KUDRNOVSKY J, 1994, PHYS REV B, V50, P9603, DOI 10.1103/PhysRevB.50.9603. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. Kudrnovsky J, 1996, PHYS REV LETT, V76, P3834, DOI 10.1103/PhysRevLett.76.3834. Kudrnovsky J, 1997, PHYS REV LETT, V78, P358, DOI 10.1103/PhysRevLett.78.358. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. MIRBT S, 1993, SOLID STATE COMMUN, V88, P331, DOI 10.1016/0038-1098(93)90519-S. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923, DOI 10.1103/PhysRevLett.71.1923. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P3870, DOI 10.1103/PhysRevLett.71.3870.}",
	number-of-cited-references = "{13}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Comput. Mater. Sci.}",
	doc-delivery-number = "{XE910}",
	unique-id = "{ISI:A1997XE91000013}"
}

J Kudrnovsky, V Drchal, I Turek, M Sob and P Weinberger. Interlayer exchange coupling: Effect of alloying. ACTA PHYSICA POLONICA A 91(1):15-25, Leden 1997. Proceedings of the European Conference Physics of Magnetism 96, POZNAN, POLAND, JUN 24-28, 1996. BibTeX

@article{ ISI:A1997WG93500003,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Sob, M and Weinberger, P",
	title = "{Interlayer exchange coupling: Effect of alloying}",
	journal = "{ACTA PHYSICA POLONICA A}",
	year = "{1997}",
	volume = "{91}",
	number = "{1}",
	pages = "{15-25}",
	month = "{JAN}",
	note = "{Proceedings of the European Conference Physics of Magnetism 96, POZNAN, POLAND, JUN 24-28, 1996}",
	organization = "{Polish Acad Sci, Inst Molec Phys; Adam Mickiewicz Univ Poznan, Inst Phys}",
	abstract = "{The effect of disorder in magnetic layers, in the spacer, and at interfaces between them on periods, amplitudes, and phases of oscillations of interlayer exchange coupling in magnetic multilayers is studied theoretically on the ab initio level. We employ the spin-polarized surface Green function technique within the tight-binding linear muffin-tin orbital method and the Lloyd formulation of the interlayer exchange coupling. The coherent potential approximation is used to describe the effect of alloying. The calculations are significantly simplified by employing the vertex-cancellation theorem. Numerical results illustrating the effect of various kinds of disorder in the system on the properties of the interlayer exchange coupling are presented.}",
	publisher = "{POLISH ACAD SCIENCES INST PHYSICS}",
	address = "{AL LOTNIKOW 32-46, 02-668 WARSAW, POLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), ACAD SCI CZECH REPUBL,INST PHYS,NA SLOVANCE 2,CZ-18040 PRAGUE 8,CZECH REPUBLIC. TECH UNIV VIENNA,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA. ACAD SCI CZECH REPUBL,INST PHYS MAT,BRNO 61662,CZECH REPUBLIC.}",
	issn = "{0587-4246}",
	keywords-plus = "{MAGNETIC MULTILAYERS; FE; CU; MAGNETORESISTANCE; DEPENDENCE; FCC}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Sob, Mojmir/D-1936-2012 Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014 Sob, Mojmir/G-6865-2011}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417 }",
	cited-references = "{BARATTA AJ, 1983, PHYS REV B, V28, P4136, DOI 10.1103/PhysRevB.28.4136. BOBO JF, 1994, J PHYS-CONDENS MAT, V6, P2689, DOI 10.1088/0953-8984/6/14/007. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. COEHOORN R, 1993, J MAGN MAGN MATER, V126, P390, DOI 10.1016/0304-8853(93)90634-E. Drchal V, 1996, PHYS REV B, V53, P15036, DOI 10.1103/PhysRevB.53.15036. DUCASTELLE F, 1975, J PHYS C SOLID STATE, V8, P3297, DOI 10.1088/0022-3719/8/20/008. GRAVENSTEIN J, 1988, J PHYS F MET PHYS, V18, P731. JOHNSON MT, 1995, PHYS REV LETT, V75, P4686, DOI 10.1103/PhysRevLett.75.4686. KROMPIEWSKI S, 1993, J MAGN MAGN MATER, V121, P238, DOI 10.1016/0304-8853(93)91195-D. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. Kudrnovsky J, 1996, PHYS REV B, V53, P5125, DOI 10.1103/PhysRevB.53.5125. Kudrnovsky J, 1996, PHYS REV B, V54, pR3738. KUDRNOVSKY J, UNPUB PHYS REV LETT. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. LEE BC, 1995, PHYS REV B, V52, P3499, DOI 10.1103/PhysRevB.52.3499. LENG Q, 1993, J MAGN MAGN MATER, V126, P367, DOI 10.1016/0304-8853(93)90629-G. MIRBT S, 1993, SOLID STATE COMMUN, V88, P331, DOI 10.1016/0038-1098(93)90519-S. OKUNO SN, 1993, PHYS REV LETT, V70, P1711, DOI 10.1103/PhysRevLett.70.1711. PARKIN SSP, 1993, EUROPHYS LETT, V24, P71, DOI 10.1209/0295-5075/24/1/012. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923, DOI 10.1103/PhysRevLett.71.1923. WANG Y, 1990, PHYS REV LETT, V65, P2732, DOI 10.1103/PhysRevLett.65.2732.}",
	number-of-cited-references = "{22}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Acta Phys. Pol. A}",
	doc-delivery-number = "{WG935}",
	unique-id = "{ISI:A1997WG93500003}"
}

P Bruno, J Kudrnovsky, V Drchal and I Turek. Interlayer exchange coupling through ordered and disordered alloy spacers. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 165(1-3):128-133, Leden 1997. Symposium E on Magnetic Ultrathin Films, Multilayers and Surfaces at the 1996 European-Materials-Research-Society Spring Meeting, STRASBOURG, FRANCE, JUN 04-07, 1996. BibTeX

@article{ ISI:A1997WF86200030,
	author = "Bruno, P and Kudrnovsky, J and Drchal, V and Turek, I",
	title = "{Interlayer exchange coupling through ordered and disordered alloy spacers}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{1997}",
	volume = "{165}",
	number = "{1-3}",
	pages = "{128-133}",
	month = "{JAN}",
	note = "{Symposium E on Magnetic Ultrathin Films, Multilayers and Surfaces at the 1996 European-Materials-Research-Society Spring Meeting, STRASBOURG, FRANCE, JUN 04-07, 1996}",
	organization = "{European Mat Res Soc; Ford Motor Co; Thompson CSF; YKK; Toshiba; SMI; Hitachi; Holm SI}",
	abstract = "{The interlayer exchange coupling between ferromagnetic films separated by a disordered or ordered alloy spacer layer is considered theoretically. This is illustrated by first-principles calculations far fee Co(001) Alms separated by disordered Cu1-xNix, Cu1-xZnx and Cu1-xAux, and by ordered CuAu alloys. For the CuAu spacer, the case of partial ordering in the alloy is also considered.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Bruno, P (Reprint Author), UNIV PARIS 11,INST ELECT FONDAMENTALE,CNRS URA 22,BATIMENT 220,F-91405 ORSAY,FRANCE. ACAD SCI CZECH REPUBL,INST PHYS,CZ-18040 PRAGUE 8,CZECH REPUBLIC. TECH UNIV VIENNA,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA. ACAD SCI CZECH REPUBL,INST PHYS MAT,CZ-61662 BRNO,CZECH REPUBLIC.}",
	doi = "{10.1016/S0304-8853(96)00487-8}",
	issn = "{0304-8853}",
	keywords = "{exchange coupling, interlayer; ordered alloy; disordered alloy}",
	keywords-plus = "{MULTILAYERS; INTERFACES; CU; FE}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{BOBO JF, 1994, J PHYS-CONDENS MAT, V6, P2689, DOI 10.1088/0953-8984/6/14/007. BOBO JF, 1993, EUROPHYS LETT, V24, P139, DOI 10.1209/0295-5075/24/2/011. BRUNO P, 1993, J MAGN MAGN MATER, V121, P248, DOI 10.1016/0304-8853(93)91197-F. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. BRUNO P, 1991, PHYS REV LETT, V67, P2592, DOI 10.1103/PhysRevLett.67.2592. BRUNO P, 1991, PHYS REV LETT, V67, P1602, DOI 10.1103/PhysRevLett.67.1602. HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S, V2. INOUE J, 1994, PHYS REV B, V50, P13541, DOI 10.1103/PhysRevB.50.13541. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. Kudrnovsky J, 1996, PHYS REV B, V53, P5125, DOI 10.1103/PhysRevB.53.5125. Kudrnovsky J, 1996, PHYS REV B, V54, pR3738. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. Lang P, 1996, PHYS REV B, V53, P9092, DOI 10.1103/PhysRevB.53.9092. LEE BC, 1995, PHYS REV B, V51, P316, DOI 10.1103/PhysRevB.51.316. LENG Q, 1993, J MAGN MAGN MATER, V126, P367, DOI 10.1016/0304-8853(93)90629-G. Mackintosh A. R., 1980, ELECTRONS FERMI SURF, P149. MATHON J, 1995, PHYS REV LETT, V74, P3696, DOI 10.1103/PhysRevLett.74.3696. NORDSTROM L, 1994, PHYS REV B, V50, P13058, DOI 10.1103/PhysRevB.50.13058. OKUNO SN, 1993, PHYS REV LETT, V70, P1711, DOI 10.1103/PhysRevLett.70.1711. PARKIN SSP, 1993, EUROPHYS LETT, V24, P71, DOI 10.1209/0295-5075/24/1/012. STILES MD, 1993, PHYS REV B, V48, P7238, DOI 10.1103/PhysRevB.48.7238. Stiles MD, 1996, J APPL PHYS, V79, P5805, DOI 10.1063/1.362195. VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063, DOI 10.1103/PhysRevLett.74.4063. WEINERT M, 1985, PHYS REV B, V32, P2115, DOI 10.1103/PhysRevB.32.2115.}",
	number-of-cited-references = "{25}",
	times-cited = "{16}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{WF862}",
	unique-id = "{ISI:A1997WF86200030}"
}

M Sob, I Turek and V Vitek. Electronic structure, atomic configuration and positron annihilation spectroscopy of extended defects in metals. In YC Jean, M Eldrup, DM Schrader and RN West (eds.). POSITRON ANNIHILATION: ICPA-11 - PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON POSITRON ANNIHILATION, KANSAS CITY, MISSOURI, USA, MAY 1997 255-2. 1997, 420-422. 11th International Conference on Positron Annihilation (ICPA-11), KANSAS CITY, MO, MAY 25-30, 1997. BibTeX

@inproceedings{ ISI:000071768100101,
	author = "Sob, M and Turek, I and Vitek, V",
	editor = "{Jean, YC and Eldrup, M and Schrader, DM and West, RN}",
	title = "{Electronic structure, atomic configuration and positron annihilation spectroscopy of extended defects in metals}",
	booktitle = "{POSITRON ANNIHILATION: ICPA-11 - PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON POSITRON ANNIHILATION, KANSAS CITY, MISSOURI, USA, MAY 1997}",
	series = "{Materials Science Forum}",
	year = "{1997}",
	volume = "{255-2}",
	pages = "{420-422}",
	note = "{11th International Conference on Positron Annihilation (ICPA-11), KANSAS CITY, MO, MAY 25-30, 1997}",
	organization = "{K L Cheng Trust Fund; Natl Sci Fdn, PHYS; Univ Missouri Kansas City, Dept Chem; Univ Missouri Kansas City, Coll Arts \& Sci; Univ Missouri Kansas City, Off Res Adm; Univ Missouri, Acad Affairs; EG\&G ORTEC}",
	abstract = "{A quantum-mechanical approach for determining the electronic structure and atomic configuration of extended defects in metals is briefly outlined and importance of theoretical methods for interpretation of positron annihilation spectroscopy data is emphasized. The electronic structure in defective region is calculated employing the self-consistent Green function approach based on the tight-binding linear muffin-tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). For atomic relaxation, we use (i) Finnis-Sinclair type many-body central force potentials and (ii) a recently developed quantum-mechanical method in which the angular dependence of interatomic forces is properly accounted for. In the latter case, the Hamiltonian is constructed within the TB-LMTO-ASA approach as well, As an example, atomic configuration of the Sigma = 5/(210)/{[}001] tilt grain boundary in tungsten is determined and local densities of states at atoms in defective region are discussed.}",
	publisher = "{TRANS TECH PUBLICATIONS LTD}",
	address = "{LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Sob, M (Reprint Author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, CZ-61662 Brno, Czech Republic. Acad Sci Czech Republic, Inst Phys Mat, CZ-61662 Brno, Czech Republic. Univ Penn, Dept Mat Sci \& Engn, Philadelphia, PA 19104 USA.}",
	issn = "{0255-5476}",
	isbn = "{0-87849-779-X}",
	keywords = "{electronic structure; extended defects; grain boundaries; local density of states; ab initio calculations}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter; Physics, Particles \& Fields}",
	researcherid-numbers = "{Sob, Mojmir/D-1936-2012 Turek, Ilja/G-5553-2014 Sob, Mojmir/G-6865-2011}",
	cited-references = "{CRAMPIN S, 1989, PHYS REV B, V40, P3413, DOI 10.1103/PhysRevB.40.3413. Dupasquier A., 1995, POSITRON SPECTROSCOP. HE YJ, 1995, MAT SCI FORUM, V175. SOB M, 1992, MATER RES SOC SYMP P, V278, P205, DOI 10.1557/PROC-278-205. SOB M, IN PRESS. SOB M, 1997, IN PRESS. Turek I., 1997, ELECT STRUCTURE DISO. Vitek V, 1996, NATO ADV SCI INST SE, V355, P53.}",
	number-of-cited-references = "{8}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{BK31T}",
	unique-id = "{ISI:000071768100101}"
}

A Gonis, PEA Turchi, J Kudrnovsky, V Drchal and I Turek. Reformulation of the Korringa-Kohn-Rostoker coherent potential approximation for the treatment of space-filling cell potentials and charge-transfer effects. JOURNAL OF PHYSICS-CONDENSED MATTER 8(42):7869-7881, 1996. BibTeX

@article{ ISI:A1996VN14600007,
	author = "Gonis, A and Turchi, PEA and Kudrnovsky, J and Drchal, V and Turek, I",
	title = "{Reformulation of the Korringa-Kohn-Rostoker coherent potential approximation for the treatment of space-filling cell potentials and charge-transfer effects}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{1996}",
	volume = "{8}",
	number = "{42}",
	pages = "{7869-7881}",
	month = "{OCT 14}",
	abstract = "{We present a reformulation of the Korringa-Kohn-Rostoker (KKR) coherent-potential approximation (CPA) which affords a number of conceptual and practical advantages over conventional formulations of the theory. In particular, as presented here the method can facilitate application to systems that cannot be described properly by a muffin-tin approximation to the cell potential and require a full potential treatment. Also, the formalism allows the derivation of the KKR CPA self-consistency condition within both a scattering matrix and a Green function approach, leading to uniquely defined species-resolved charge densities and densities of states. As shown in a companion paper, this formulation also allows the treatment of the so-called charge-transfer effects associated with Wigner-Seitz cells in an alloy which contain net amounts of charge.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{TECHNO HOUSE, REDCLIFFE WAY, BRISTOL, ENGLAND BS1 6NX}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Gonis, A (Reprint Author), LAWRENCE LIVERMORE NATL LAB,DEPT CHEM \& MAT SCI,L-268,LIVERMORE,CA 94550, USA. ACAD SCI CZECH REPUBL,INST PHYS,CZ-18040 PRAGUE 8,CZECH REPUBLIC. ACAD SCI CZECH REPUBL,INST PHYS MAT,CZ-61662 BRNO,CZECH REPUBLIC.}",
	doi = "{10.1088/0953-8984/8/42/007}",
	issn = "{0953-8984}",
	keywords-plus = "{NON-MUFFIN-TIN; MULTIPLE-SCATTERING THEORY; ELECTRONIC-STRUCTURE; BAND THEORY; RANDOM ALLOYS; FORMULATION; EQUATIONS; SYSTEMS; SHAPE}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{BLACKMAN JA, 1971, PHYS REV B-SOLID ST, V4, P2412, DOI 10.1103/PhysRevB.4.2412. BROWN RG, 1986, PHYS REV B, V33, P7937, DOI 10.1103/PhysRevB.33.7937. BROWN RG, 1983, PHYS REV B, V27, P4564, DOI 10.1103/PhysRevB.27.4564. BROWN RG, 1985, PHYS REV B, V32, P3454. BUTLER WH, 1993, PHYS REV B, V48, P2118, DOI 10.1103/PhysRevB.48.2118. FAULKNER JS, 1985, PHYS REV B, V32, P1339, DOI 10.1103/PhysRevB.32.1339. FAULKNER JS, 1988, PHYS REV B, V38, P1686, DOI 10.1103/PhysRevB.38.1686. FERREIRA LG, 1976, PHYS REV B, V14, P354, DOI 10.1103/PhysRevB.14.354. GAULKNER JS, 1982, PROGR MAT SCI, V1. GONIS A, 1986, PHYS REV B, V33, P5914, DOI 10.1103/PhysRevB.33.5914. GONIS A, 1988, PHYS REV B, V38, P3564, DOI 10.1103/PhysRevB.38.3564. GONIS A, 1989, PHYS REV B, V40, P947, DOI 10.1103/PhysRevB.40.947. Gonis A., 1992, GREEN FUNCTIONS ORDE. GYORFFY BL, 1978, ELECTRONS DISORDERED, P89. JOHN W, 1972, PHYS STATUS SOLIDI B, V53, P287, DOI 10.1002/pssb.2220530131. KEISTER BD, 1983, ANN PHYS-NEW YORK, V149, P162, DOI 10.1016/0003-4916(83)90303-2. KOHN W, 1954, PHYS REV, V94, P1111, DOI 10.1103/PhysRev.94.1111. KORRINGA J, 1947, PHYSICA, V13, P392, DOI 10.1016/0031-8914(47)90013-X. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1987, PHYS REV B, V35, P2487, DOI 10.1103/PhysRevB.35.2487. KUDRNOVSKY J, 1988, SOLID STATE COMMUN, V70, P577. MOLENAAR J, 1988, J PHYS C SOLID STATE, V21, P1455, DOI 10.1088/0022-3719/21/8/019. MOOKERJEE A, 1975, J PHYS C SOLID STATE, V8, P2943, DOI 10.1088/0022-3719/8/18/014. NESBET RK, 1984, PHYS REV B, V30, P4230, DOI 10.1103/PhysRevB.30.4230. NESBET RK, 1990, PHYS REV B, V41, P4948, DOI 10.1103/PhysRevB.41.4948. NESBET RK, 1986, PHYS REV B, V33, P3027. RAZEE SSA, 1993, PHYS REV B, V48, P1349, DOI 10.1103/PhysRevB.48.1349. SINGH PP, 1994, PHYS REV B, V49, P1642, DOI 10.1103/PhysRevB.49.1642. SOVEN P, 1967, PHYS REV, V156, P809, DOI 10.1103/PhysRev.156.809. TAYLOR DW, 1967, PHYS REV, V156, P1017, DOI 10.1103/PhysRev.156.1017. VELICKY B, 1968, PHYS REV, V175, P747, DOI 10.1103/PhysRev.175.747. WILLIAMS AR, 1974, J PHYS C SOLID STATE, V7, P37, DOI 10.1088/0022-3719/7/1/013. YEH CY, 1990, PHYS REV B, V42, P10976, DOI 10.1103/PhysRevB.42.10976. ZELLER R, 1988, PHYS REV B, V38, P5993, DOI 10.1103/PhysRevB.38.5993. ZELLER R, 1987, J PHYS C SOLID STATE, V20, P2347, DOI 10.1088/0022-3719/20/16/010. ZHANG XG, 1989, PHYS REV B, V39, P10373, DOI 10.1103/PhysRevB.39.10373. ZIESCHE P, 1974, J PHYS C SOLID STATE, V7, P1085, DOI 10.1088/0022-3719/7/6/009. ZIESCHE P, 1983, ERGEBNISSE ELECTRONE, P151.}",
	number-of-cited-references = "{38}",
	times-cited = "{8}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{VN146}",
	unique-id = "{ISI:A1996VN14600007}"
}

A Gonis, PEA Turchi, J Kudrnovsky, V Drchal and I Turek. Charge-transfer effects in disordered alloys: The test case of Al-Li alloys. JOURNAL OF PHYSICS-CONDENSED MATTER 8(42):7883-7898, 1996. BibTeX

@article{ ISI:A1996VN14600008,
	author = "Gonis, A and Turchi, PEA and Kudrnovsky, J and Drchal, V and Turek, I",
	title = "{Charge-transfer effects in disordered alloys: The test case of Al-Li alloys}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{1996}",
	volume = "{8}",
	number = "{42}",
	pages = "{7883-7898}",
	month = "{OCT 14}",
	abstract = "{A general method for treating the so-called charge-transfer effects in substitutional alloys is suggested within the formalism of the single-site (SS) coherent-potential approximation (CPA). The method allows the self-consistent treatment of the Poisson field through the construction of a configurational space and species-dependent structure constants which provide the means for an application of multiple-scattering theory which avoids overlap between adjacent cells. This, in rum, allows the treatment of non-neutral cells at the level of the SS CPA, avoiding the need for subsequent correction the results of the CPA. The method is compared with previous approaches to the problem and is used to treat the case of Al-Li alloys for which significant charge transfer is known to exist. The results are compared with those obtained within the muffin-tin implementation of the CPA, and a final discussion of the general features of the proposed method is given.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{TECHNO HOUSE, REDCLIFFE WAY, BRISTOL, ENGLAND BS1 6NX}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Gonis, A (Reprint Author), LAWRENCE LIVERMORE NATL LAB,DEPT CHEM \& MAT SCI,L-268,LIVERMORE,CA 94550, USA. ACAD SCI CZECH REPUBL,INST PHYS,CZ-18040 PRAGUE 8,CZECH REPUBLIC. ACAD SCI CZECH REPUBL,INST PHYS MAT,CZ-61662 BRNO,CZECH REPUBLIC.}",
	doi = "{10.1088/0953-8984/8/42/008}",
	issn = "{0953-8984}",
	keywords-plus = "{COHERENT-POTENTIAL APPROXIMATION; RANDOM METALLIC ALLOYS; BAND-STRUCTURE METHODS; ELECTRONIC-STRUCTURE; TRANSITION; STABILITY; SURFACES; ENERGY}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{ABRIKOSOV IA, 1992, SOLID STATE COMMUN, V83, P867, DOI 10.1016/0038-1098(92)90902-L. BLACKMAN JA, 1971, PHYS REV B-SOLID ST, V4, P2412, DOI 10.1103/PhysRevB.4.2412. DRCHAL V, 1994, PHYS REV B, V50, P7903, DOI 10.1103/PhysRevB.50.7903. FAULKNER JS, 1982, PROGR MAT SCI, V1. GONIS A, 1996, UNPUB. GYORFFY BL, 1983, PHYS REV LETT, V50, P374, DOI 10.1103/PhysRevLett.50.374. GYORFFY BL, 1978, ELECTRONS DISORDERED, P89. JOHNSON DD, 1993, PHYS REV B, V48, P11553, DOI 10.1103/PhysRevB.48.11553. KORZHAVYI PA, 1994, PHYS REV B, V49, P14229, DOI 10.1103/PhysRevB.49.14229. KORZHAVYI PA, 1995, PHYS REV B, V51, P5773, DOI 10.1103/PhysRevB.51.5773. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1987, PHYS REV B, V35, P2487, DOI 10.1103/PhysRevB.35.2487. KUDRNOVSKY J, 1988, SOLID STATE COMMUN, V70, P577. LU ZW, 1991, PHYS REV B, V44, P512, DOI 10.1103/PhysRevB.44.512. MAGRI R, 1990, PHYS REV B, V42, P11388, DOI 10.1103/PhysRevB.42.11388. MIKALOPAS J, 1992, THESIS U CALIFORNIA. PAPACONSTANTOPOULOS DA, 1989, PHYS REV B, V40, P12196, DOI 10.1103/PhysRevB.40.12196. PRABHAKAR P, 1994, PHYS REV B, V49, P1642. SIMAK SI, 1993, SOLID STATE COMMUN, V87, P393, DOI 10.1016/0038-1098(93)90783-J. SINGH PP, 1993, PHYS REV LETT, V71, P1605, DOI 10.1103/PhysRevLett.71.1605. SINGH PP, 1994, PHYS REV B, V49, P1642, DOI 10.1103/PhysRevB.49.1642. SOVEN P, 1967, PHYS REV, V156, P809, DOI 10.1103/PhysRev.156.809. STAUNTON JB, 1994, PHYS REV B, V50, P1450, DOI 10.1103/PhysRevB.50.1450. TAYLOR DW, 1967, PHYS REV, V156, P1017, DOI 10.1103/PhysRev.156.1017. VELICKY B, 1968, PHYS REV, V175, P747, DOI 10.1103/PhysRev.175.747. ZELLER R, 1987, J PHYS F MET PHYS, V17, P2123, DOI 10.1088/0305-4608/17/10/020.}",
	number-of-cited-references = "{26}",
	times-cited = "{9}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{VN146}",
	unique-id = "{ISI:A1996VN14600008}"
}

V Drchal, J Kudrnovsky, A Pasturel, I Turek and P Weinberger. Ab initio theory of surface segregation: Self-consistent determination of the concentration profile. PHYSICAL REVIEW B 54(11):8202-8212, 1996. BibTeX

@article{ ISI:A1996VL14500092,
	author = "Drchal, V and Kudrnovsky, J and Pasturel, A and Turek, I and Weinberger, P",
	title = "{Ab initio theory of surface segregation: Self-consistent determination of the concentration profile}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1996}",
	volume = "{54}",
	number = "{11}",
	pages = "{8202-8212}",
	month = "{SEP 15}",
	abstract = "{The parameters of the effective Ising Hamiltonian governing segregation and ordering phenomena in the surface region of an alloy are determined from first principles, Employing the force theorem. the total energy of semi-infinite disordered alloys is mapped onto an Ising Hamiltonian. The band term is treated within the generalized perturbation method, and, in addition, the contributions to the on-site terms of the Ising Hamiltonian from core stales, and the double-counting and Madelung terms are included. The concentration profile is determined by using Monte Carlo simulations. The electronic structure and the Ising Hamiltonian parameters are then recalculated for the profile, and the whole procedure is repeated until self-consistency between the electronic and atomic structures of the alloy surface is achieved. As an illustration, the results for an fcc(001) surface of the Cu-Ni alloys as calculated within the all-electron fully relativistic tight-binding linear-muffin-tin-orbital coherent potential approximation method are discussed.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Drchal, V (Reprint Author), ACAD SCI CZECH REPUBL, INST PHYS, NA SLOVANCE 2, CZ-18040 PRAGUE 8, CZECH REPUBLIC. CNRS, F-38042 GRENOBLE, FRANCE. ACAD SCI CZECH REPUBL, INST PHYS MAT, CZ-61662 BRNO, CZECH REPUBLIC. VIENNA TECH UNIV, INST TECH ELECTROCHEM, A-1060 VIENNA, AUSTRIA.}",
	doi = "{10.1103/PhysRevB.54.8202}",
	issn = "{1098-0121}",
	keywords-plus = "{EFFECTIVE CLUSTER INTERACTIONS; RANDOM SUBSTITUTIONAL ALLOYS; TRANSITION-METAL ALLOYS; BAND-STRUCTURE METHODS; BINDING ISING-MODEL; ELECTRONIC-STRUCTURE; CU-NI; BINARY-ALLOYS; PRESSURE CALCULATIONS; TOTAL-ENERGY}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{BLACKMAN JA, 1971, PHYS REV B-SOLID ST, V4, P2412, DOI 10.1103/PhysRevB.4.2412. CITRIN PH, 1983, PHYS REV B, V27, P3176, DOI 10.1103/PhysRevB.27.3176. CONNOLLY JWD, 1983, PHYS REV B, V27, P5169, DOI 10.1103/PhysRevB.27.5169. DENTSCH T, UNPUB. DRCHAL V, 1992, PHYS REV B, V45, P14328, DOI 10.1103/PhysRevB.45.14328. DRCHAL V, 1994, PHYS REV B, V50, P7903, DOI 10.1103/PhysRevB.50.7903. DUCASTELLE F, 1976, J PHYS F MET PHYS, V6, P2039, DOI 10.1088/0305-4608/6/11/005. DUCASTELLE F, 1975, J PHYS C SOLID STATE, V8, P3297, DOI 10.1088/0022-3719/8/20/008. Ducastelle F., 1991, ORDER PHASE STABILIT. EYMERY J, 1990, SURF SCI, V231, P419, DOI 10.1016/0039-6028(90)90211-P. FOILES SM, 1985, PHYS REV B, V32, P7685, DOI 10.1103/PhysRevB.32.7685. GONIS A, 1987, PHYS REV B, V36, P4630, DOI 10.1103/PhysRevB.36.4630. GONIS A, 1994, NATO ADV SCI INST SE, V256, P197. GONIS A, UNPUB. Jackson J. D., 1975, CLASSICAL ELECTRODYN. JANAK JF, 1974, PHYS REV B, V9, P3985, DOI 10.1103/PhysRevB.9.3985. JOHNSON DD, 1990, PHYS REV B, V41, P9701, DOI 10.1103/PhysRevB.41.9701. JOHNSON DD, 1993, PHYS REV B, V48, P11553, DOI 10.1103/PhysRevB.48.11553. KIKUCHI R, 1979, ACTA METALL MATER, V27, P1337, DOI 10.1016/0001-6160(79)90203-7. Kikuchi R., 1951, PHYS REV, V81, P998. KORZHAVYI PA, 1994, PHYS REV B, V49, P14229, DOI 10.1103/PhysRevB.49.14229. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. KUDRNOVSKY J, 1993, PHYS REV B, V47, P16525, DOI 10.1103/PhysRevB.47.16525. KUMAR V, 1984, PHYS REV LETT, V53, P278, DOI 10.1103/PhysRevLett.53.278. LEGRAND B, 1990, PHYS REV B, V41, P4422, DOI 10.1103/PhysRevB.41.4422. Lifshitz IM, 1988, INTRO THEORY DISORDE. MACKINTOSH AR, 1980, ELECTRONS FERMI SURF. MAGRI R, 1990, PHYS REV B, V42, P11388, DOI 10.1103/PhysRevB.42.11388. NG YS, 1979, PHYS REV LETT, V42, P588, DOI 10.1103/PhysRevLett.42.588. OSORIO R, 1992, PHYS REV B, V45, P11173, DOI 10.1103/PhysRevB.45.11173. PASTUREL A, 1993, PHYS REV B, V48, P2704, DOI 10.1103/PhysRevB.48.2704. ROSENGREN A, 1980, PHYS REV B, V22, P3706, DOI 10.1103/PhysRevB.22.3706. RUBAN AV, 1994, PHYS REV B, V49, P11383, DOI 10.1103/PhysRevB.49.11383. SAKURAI T, 1985, PHYS REV LETT, V55, P514, DOI 10.1103/PhysRevLett.55.514. SCHULTHESS T, 1994, PHYS REV B, V50, P18564, DOI 10.1103/PhysRevB.50.18564. SINFELT JH, 1972, J CATAL, V24, P280. SINGH PP, 1993, PHYS REV LETT, V71, P1605, DOI 10.1103/PhysRevLett.71.1605. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. STAUNTON JB, 1994, PHYS REV B, V50, P1450, DOI 10.1103/PhysRevB.50.1450. TREGLIA G, 1987, PHYS REV B, V35, P4338, DOI 10.1103/PhysRevB.35.4338. TREGLIA G, 1988, EUROPHYS LETT, V7, P575, DOI 10.1209/0295-5075/7/7/001. WILLIAMS FL, 1974, SURF SCI, V45, P377, DOI 10.1016/0039-6028(74)90177-0. WOOD DM, 1989, PHYS REV B, V40, P4062, DOI 10.1103/PhysRevB.40.4062.}",
	number-of-cited-references = "{44}",
	times-cited = "{20}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{VL145}",
	unique-id = "{ISI:A1996VL14500092}"
}

MV GandugliaPirovano, V Natoli, MH Cohen, J Kudrnovsky and I Turek. Potential, core-level, and d band shifts at transition-metal surfaces. PHYSICAL REVIEW B 54(12):8892-8898, 1996. BibTeX

@article{ ISI:A1996VM97600088,
	author = "GandugliaPirovano, MV and Natoli, V and Cohen, MH and Kudrnovsky, J and Turek, I",
	title = "{Potential, core-level, and d band shifts at transition-metal surfaces}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1996}",
	volume = "{54}",
	number = "{12}",
	pages = "{8892-8898}",
	month = "{SEP 15}",
	abstract = "{We have extended the validity of the correlation between the surface 3d core-level shift (SCLS) and the surface d band shift (SDBS) to the entire 4d transition-metal series and to the neighboring elements Sr and Ag via accurate first-principles calculations. We find that the correlation is quasilinear and robust with respect to the differencies both between initial- and final-state calculations of the SCLS's and two distinct measures of the SDBS's. We show that despite the complex spatial dependence of the surface-potential shift (SPS) and the location of the 3d and 4d orbitals in different regions of space, the correlation exists because the sampling of the SPS by the 3d and 4d orbitals remains similar. We show further that the sign change of the SCLS's across the transition series does indeed arise from the d band-narrowing mechanism previously proposed, However, while in the heavier transition metals the predicted increase of d electrons in the surface layer relative to the bulk arises primarily from transfers from s and p states to d states within the surface layer, in the lighter transition metals the predicted decrease of surface d electrons arises primarily from flow out into the vacuum.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{MAX PLANCK GESELL,FRITZ HABER INST,D-14195 BERLIN,GERMANY. EXXON RES \& ENGN CO,CORP RES SCI LABS,ANNANDALE,NJ 08801. ACAD SCI CZECH REPUBL,INST PHYS,CZ-18040 PRAGUE 8,CZECH REPUBLIC. VIENNA TECH UNIV,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA. ACAD SCI CZECH REPUBL,INST PHYS MAT,CZ-61662 BRNO,CZECH REPUBLIC. MAX PLANCK INST PHYS KOMPLEXER SYST,AUSSENSTELLE STUTTGART,D-70569 STUTTGART,GERMANY.}",
	doi = "{10.1103/PhysRevB.54.8892}",
	issn = "{0163-1829}",
	keywords-plus = "{SINGLE-CRYSTAL SURFACE; AB-INITIO CALCULATIONS; CHEMICAL-REACTIVITY; SYSTEMS; STATES; BULK}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 }",
	cited-references = "{ALDEN M, 1993, PHYS REV LETT, V71, P2449, DOI 10.1103/PhysRevLett.71.2449. ALDEN M, 1994, PHYS REV B, V50, P5131, DOI 10.1103/PhysRevB.50.5131. ANDERSEN JN, 1994, PHYS REV B, V50, P17525, DOI 10.1103/PhysRevB.50.17525. BORG A, 1994, J PHYS-CONDENS MAT, V6, pL7, DOI 10.1088/0953-8984/6/1/002. CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566. CITRIN PH, 1983, PHYS REV B, V27, P3176, DOI 10.1103/PhysRevB.27.3176. COHEN MH, 1995, J CHEM PHYS, V103, P3543, DOI 10.1063/1.470238. COHEN MH, 1994, J CHEM PHYS, V101, P8988, DOI 10.1063/1.468026. COHEN MH, 1994, PHYS REV LETT, V72, P3222, DOI 10.1103/PhysRevLett.72.3222. COHEN MH, 1996, DENSITY FUNCTIONAL T. GANDUGLIAPIROVANO MV, 1994, PHYS REV B, V50, P11142, DOI 10.1103/PhysRevB.50.11142. GANDUGLIAPIROVANO MV, 1995, SURF SCI, V331, P691, DOI 10.1016/0039-6028(95)00161-1. Hammer B, 1995, SURF SCI, V343, P211, DOI 10.1016/0039-6028(96)80007-0. HAMMER B, 1995, PHYS REV LETT, V74, P3487, DOI 10.1103/PhysRevLett.74.3487. HAMMER B, 1995, NATURE, V376, P238, DOI 10.1038/376238a0. Hammer B, 1996, PHYS REV LETT, V76, P2141, DOI 10.1103/PhysRevLett.76.2141. Hennig D, 1996, PHYS REV B, V53, P10344, DOI 10.1103/PhysRevB.53.10344. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. KUDRNOVSKY J, 1994, LECT METHODS ELECT S, P231. METHFESSEL M, 1995, SURF REV LETT, V2, P197, DOI 10.1142/S0218625X95000224. NYHOLM R, 1992, J PHYS-CONDENS MAT, V4, P277, DOI 10.1088/0953-8984/4/1/039. PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048. RODRIGUEZ JA, 1991, J PHYS CHEM-US, V95, P4196, DOI 10.1021/j100164a008. RODRIGUEZ JA, 1994, SURF SCI, V307, P377, DOI 10.1016/0039-6028(94)90422-7. RODRIGUEZ JA, 1992, J VAC SCI TECHNOL A, V10, P2540, DOI 10.1116/1.578095. Skriver H., 1984, LMTO METHOD. SLATER JC, 1974, QUANTUM THEORY MOL S, V4, P51. VANDERVEEN JF, 1981, SOLID STATE COMMUN, V37, P555, DOI 10.1016/0038-1098(81)90133-2. WEINERT M, 1995, PHYS REV B, V51, P17168, DOI 10.1103/PhysRevB.51.17168. WILKE S, 1994, PHYS REV B, V50, P2548, DOI 10.1103/PhysRevB.50.2548. Wilke S, 1996, PHYS REV B, V53, P4926, DOI 10.1103/PhysRevB.53.4926. Wilke S, 1996, PHYS REV LETT, V77, P1560, DOI 10.1103/PhysRevLett.77.1560.}",
	number-of-cited-references = "{32}",
	times-cited = "{30}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{11}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{VM976}",
	unique-id = "{ISI:A1996VM97600088}"
}

V Drchal, J Kudrnovsky and I Turek. Ab-initio calculations of the electronic and atomic structure of solids and their surfaces. COMPUTER PHYSICS COMMUNICATIONS 97(1-2):111-123, Srpen 1996. 10th European Summer School on Computing Techniques in Physics - High Performance Computing in Science, SKALSKY DVUR, CZECH REPUBLIC, SEP 05-14, 1995. BibTeX

@article{ ISI:A1996VD45300012,
	author = "Drchal, V and Kudrnovsky, J and Turek, I",
	title = "{Ab-initio calculations of the electronic and atomic structure of solids and their surfaces}",
	journal = "{COMPUTER PHYSICS COMMUNICATIONS}",
	year = "{1996}",
	volume = "{97}",
	number = "{1-2}",
	pages = "{111-123}",
	month = "{AUG}",
	note = "{10th European Summer School on Computing Techniques in Physics - High Performance Computing in Science, SKALSKY DVUR, CZECH REPUBLIC, SEP 05-14, 1995}",
	organization = "{European Phys Soc, Computat Phys Grp; German Phys Soc; Siemens Nixdorf Czech Republic; Westinghouse Elect Corp}",
	abstract = "{We briefly review an ab-initio Green function method for the calculation of the electronic structure of disordered alloys and their surfaces based on the local (spin) density approximation and the all-electron tight-binding linear muffin-tin orbital method. The semi-infinite geometry is incorporated via the surface Green functions and the coherent potential approximation (CPA) is used to treat the alloy disorder. The electronic structure serves as an input for the first-principles studies of the phase stability of metallic alloys and their surfaces, and of interlayer exchange interactions in magnetic multilayers. The numerical methods and algorithms employed in the calculations of this kind are discussed in detail, Stress is laid on the evaluation of their efficiency and reliability.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Drchal, V (Reprint Author), ACAD SCI CZECH REPUBL, INST PHYS, CZ-18040 PRAGUE 8, CZECH REPUBLIC. ACAD SCI CZECH REPUBL, INST PHYS MAT, CZ-61662 BRNO, CZECH REPUBLIC. VIENNA TECH UNIV, INST TECH ELECTROCHEM, A-1060 VIENNA, AUSTRIA.}",
	doi = "{10.1016/0010-4655(96)00025-2}",
	issn = "{0010-4655}",
	keywords-plus = "{BAND-STRUCTURE METHODS; GREEN-FUNCTION; RANDOM ALLOYS; CONTINUATION; INTERFACES; CU}",
	research-areas = "{Computer Science; Physics}",
	web-of-science-categories = "{Computer Science, Interdisciplinary Applications; Physics, Mathematical}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{AKAI H, 1985, J PHYS C SOLID STATE, V18, P2455, DOI 10.1088/0022-3719/18/12/009. Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. BINDER K, 1994, MONTE CARLO METHODS. BLUGEL S, 1988, THESIS KFA JULICH. BROYDEN CG, 1967, MATH COMPUT, V21, P368, DOI 10.2307/2003239. Broyden C.G., 1965, MATH COMPUT, V19, P577, DOI DOI 10.1090/S0025-5718-1965-0198670-6. DEDERICHS PH, 1983, PHYS REV B, V28, P5462, DOI 10.1103/PhysRevB.28.5462. DESCLAUX JP, 1969, COMPUT PHYS COMMUN, V1, P216. DRCHAL V, 1992, PHYS REV B, V45, P14328, DOI 10.1103/PhysRevB.45.14328. DRCHAL V, 1994, PHYS REV B, V50, P7903, DOI 10.1103/PhysRevB.50.7903. DUCASTELLE F, 1976, J PHYS F MET PHYS, V6, P2039, DOI 10.1088/0305-4608/6/11/005. Ducastelle F., 1991, ORDER PHASE STABILIT. EBERT H, 1989, J PHYS-CONDENS MAT, V1, P9111, DOI 10.1088/0953-8984/1/46/005. ESCHRIG H, 1986, J PHYS C SOLID STATE, V19, P7173, DOI 10.1088/0022-3719/19/36/009. GODFRIN EM, 1991, J PHYS-CONDENS MAT, V3, P7843, DOI 10.1088/0953-8984/3/40/005. GONIS A, 1994, NATO ADV SCI INST SE, V256, P197. HASS KC, 1984, PHYS REV B, V29, P3697, DOI 10.1103/PhysRevB.29.3697. HUANG K, 1963, STATISTICAL MECHANIC. JOHNSON DD, 1988, PHYS REV B, V38, P12807, DOI 10.1103/PhysRevB.38.12807. KUDRNOVSKY J, 1994, PHYS REV B, V50, P9603, DOI 10.1103/PhysRevB.50.9603. KUDRNOVSKY J, 1992, PHYS REV LETT, V69, P308, DOI 10.1103/PhysRevLett.69.308. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1994, PROG SURF SCI, V46, P159, DOI 10.1016/0079-6816(94)90076-0. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. KUDRNOVSKY J, 1993, PHYS REV B, V47, P16525, DOI 10.1103/PhysRevB.47.16525. KUDRNOVSKY J, 1994, LECT METHODS ELECT S, P231. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. LLOYD P, 1972, ADV PHYS, V21, P69, DOI 10.1080/00018737200101268. Loucks T.L., 1967, AUGMENTED PLANE WAVE. LOWDIN PO, 1951, J CHEM PHYS, V19, P1396. MACKINTOSH AR, 1980, ELECTRONS FERMI SURF. NATOLI VD, UNPUB J COMPUT PHYS. Ortega J. M., 1970, ITERATIVE SOLUTION N. PASTUREL A, 1993, PHYS REV B, V48, P2704, DOI 10.1103/PhysRevB.48.2704. SANCHO MPL, 1985, J PHYS F MET PHYS, V15, P851, DOI 10.1088/0305-4608/15/4/009. Skriver H., 1984, LMTO METHOD. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. VELICKY B, 1968, PHYS REV, V175, P747, DOI 10.1103/PhysRev.175.747. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009.}",
	number-of-cited-references = "{40}",
	times-cited = "{4}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{Comput. Phys. Commun.}",
	doc-delivery-number = "{VD453}",
	unique-id = "{ISI:A1996VD45300012}"
}

J Kudrnovsky, V Drchal, P Bruno, I Turek and P Weinberger. Interlayer magnetic coupling: Effect of alloying in the spacer. PHYSICAL REVIEW B 54(6):R3738-R3741, 1996. BibTeX

@article{ ISI:A1996VD67700018,
	author = "Kudrnovsky, J and Drchal, V and Bruno, P and Turek, I and Weinberger, P",
	title = "{Interlayer magnetic coupling: Effect of alloying in the spacer}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1996}",
	volume = "{54}",
	number = "{6}",
	pages = "{R3738-R3741}",
	month = "{AUG 1}",
	abstract = "{The influence of alloying in the spacer on the periods and the amplitudes of the oscillations of exchange coupling in magnetic multilayers is studied from first principles. The effect of substitutional randomness in the spacer is treated within the coherent potential approximation and the validity of the simplified virtual-crystal approximation is examined. As a case study, results obtained for Co(001) slabs in random fee Cu(1-x)M(x) spacers (M=Ni, Zn, and Au) are presented and discussed.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), ACAD SCI CZECH REPUBL,INST PHYS,NA SLOVANCE 2,CZ-18040 PRAGUE 8,CZECH REPUBLIC. TECH UNIV VIENNA,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA. UNIV PARIS 11,INST ELECT FONDAMENTALE,CNRS URA 22,F-91405 ORSAY,FRANCE. ACAD SCI CZECH REPUBL,INST PHYS MAT,CZ-61662 BRNO,CZECH REPUBLIC.}",
	issn = "{0163-1829}",
	keywords-plus = "{OSCILLATION PERIODS; EXCHANGE; MULTILAYERS; FE; CU}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{BARATTA AJ, 1983, PHYS REV B, V28, P4136, DOI 10.1103/PhysRevB.28.4136. BOBO JF, 1994, J PHYS-CONDENS MAT, V6, P2689, DOI 10.1088/0953-8984/6/14/007. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. Bruno P, 1996, PHYS REV LETT, V76, P4254, DOI 10.1103/PhysRevLett.76.4254. Drchal V, 1996, PHYS REV B, V53, P15036, DOI 10.1103/PhysRevB.53.15036. DUCASTELLE F, 1975, J PHYS C SOLID STATE, V8, P3297, DOI 10.1088/0022-3719/8/20/008. GRAVENSTEIN J, 1988, J PHYS F MET PHYS, V18, P731. Heinrich B., 1994, ULTRATHIN MAGNETIC S, P45. KROMPIEWSKI S, 1993, J MAGN MAGN MATER, V121, P238, DOI 10.1016/0304-8853(93)91195-D. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. KUDRNOVSKY J, 1993, PHYS REV B, V47, P16525, DOI 10.1103/PhysRevB.47.16525. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. Lang P, 1996, PHYS REV B, V53, P9092, DOI 10.1103/PhysRevB.53.9092. LEE BC, 1995, PHYS REV B, V52, P3499, DOI 10.1103/PhysRevB.52.3499. LENG Q, 1993, J MAGN MAGN MATER, V126, P367, DOI 10.1016/0304-8853(93)90629-G. MATHON J, 1995, PHYS REV LETT, V74, P3696, DOI 10.1103/PhysRevLett.74.3696. MIRBT S, 1993, SOLID STATE COMMUN, V88, P331, DOI 10.1016/0038-1098(93)90519-S. NORDSTROM L, 1994, PHYS REV B, V50, P13058, DOI 10.1103/PhysRevB.50.13058. OKUNO SN, 1993, PHYS REV LETT, V70, P1711, DOI 10.1103/PhysRevLett.70.1711. PARKIN SSP, 1993, EUROPHYS LETT, V24, P71, DOI 10.1209/0295-5075/24/1/012. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923, DOI 10.1103/PhysRevLett.71.1923. VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063, DOI 10.1103/PhysRevLett.74.4063.}",
	number-of-cited-references = "{22}",
	times-cited = "{24}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{VD677}",
	unique-id = "{ISI:A1996VD67700018}"
}

V Drchal, J Kudrnovsky, I Turek and P Weinberger. Interlayer magnetic coupling: The torque method. PHYSICAL REVIEW B 53(22):15036-15044, 1996. BibTeX

@article{ ISI:A1996UR04700047,
	author = "Drchal, V and Kudrnovsky, J and Turek, I and Weinberger, P",
	title = "{Interlayer magnetic coupling: The torque method}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1996}",
	volume = "{53}",
	number = "{22}",
	pages = "{15036-15044}",
	month = "{JUN 1}",
	abstract = "{We present ab initio calculations of the interlayer exchange coupling between two, in general noncollinearly aligned magnetic slabs embedded in a nonmagnetic spacer. Based on a surface Green's function formalism, two equivalent but formally and physically different approaches are examined and discussed. For the Co/Cu/Co(001) system we demonstrate the usefulness of the concept of infinitesimal rotations in order to calculate the coupling for a finite relative angle theta, in particular for theta=pi, between the corresponding spin directions in the magnetic slabs. The temperature and layer dependence of the interlayer exchange coupling is examined and the possibility for noncollinear coupling is investigated.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Drchal, V (Reprint Author), ACAD SCI CZECH REPUBL,INST PHYS,CZ-18040 PRAGUE 8,CZECH REPUBLIC. VIENNA TECH UNIV,INST TECH ELEKTROCHEM,A-1060 VIENNA,AUSTRIA. ACAD SCI CZECH REPUBL,INST PHYS MAT,CZ-61662 BRNO,CZECH REPUBLIC.}",
	doi = "{10.1103/PhysRevB.53.15036}",
	issn = "{0163-1829}",
	keywords-plus = "{BIQUADRATIC EXCHANGE; FERROMAGNETS; MULTILAYERS; MECHANISM; METALS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. BRUNO P, 1992, PHYS REV B, V46, P261, DOI 10.1103/PhysRevB.46.261. DALBUQUERQUE J, 1994, PHYS REV B, V49, P16062, DOI 10.1103/PhysRevB.49.16062. DRCHAL V, 1992, PHYS REV B, V45, P14328, DOI 10.1103/PhysRevB.45.14328. EDWARDS DM, 1995, J MAGN MAGN MATER, V140, P517, DOI 10.1016/0304-8853(94)01534-1. EDWARDS DM, 1993, J MAGN MAGN MATER, V126, P380, DOI 10.1016/0304-8853(93)90631-B. ERICKSON RP, 1993, PHYS REV B, V47, P2626, DOI 10.1103/PhysRevB.47.2626. HATHAWAY KB, 1992, J MAGN MAGN MATER, V104, P1840, DOI 10.1016/0304-8853(92)91572-B. Heinrich B., 1994, ULTRATHIN MAGNETIC S, P45. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. Kudrnovsky J, 1996, PHYS REV B, V53, P5125, DOI 10.1103/PhysRevB.53.5125. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. LANCZOS C, 1988, APPL ANAL, P219. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. LIECHTENSTEIN AI, 1987, J MAGN MAGN MATER, V67, P65, DOI 10.1016/0304-8853(87)90721-9. MESSIAH A, 1969, QUANTUM MECH, V2. NORDSTROM L, 1994, PHYS REV B, V50, P13058, DOI 10.1103/PhysRevB.50.13058. SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995, DOI 10.1103/PhysRevB.39.6995. SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172, DOI 10.1103/PhysRevLett.67.3172. SLONCZEWSKI JC, 1993, J APPL PHYS, V73, P5957, DOI 10.1063/1.353483. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009. WILDBERGER K, 1995, PHYS REV B, V52, P11502, DOI 10.1103/PhysRevB.52.11502.}",
	number-of-cited-references = "{23}",
	times-cited = "{35}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{UR047}",
	unique-id = "{ISI:A1996UR04700047}"
}

P Bruno, J Kudrnovsky, V Drchal and I Turek. Interlayer exchange coupling: The effect of substitutional disorder. PHYSICAL REVIEW LETTERS 76(22):4254-4257, 1996. BibTeX

@article{ ISI:A1996UM24500039,
	author = "Bruno, P and Kudrnovsky, J and Drchal, V and Turek, I",
	title = "{Interlayer exchange coupling: The effect of substitutional disorder}",
	journal = "{PHYSICAL REVIEW LETTERS}",
	year = "{1996}",
	volume = "{76}",
	number = "{22}",
	pages = "{4254-4257}",
	month = "{MAY 27}",
	abstract = "{The effect of substitutional disorder on the interlayer exchange coupling is studied, with focus on the role of the `'vertex corrections.'' It is proved, on general grounds, that, to first order, the latter do not contribute to the exchange coupling, due to exact cancellation. The applicability of this result for realistic systems is supported by first-principle calculations within the coherent potential approximation, for various disordered systems.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Bruno, P (Reprint Author), UNIV PARIS 11,INST ELECTR FONDAMENTALE,CNRS,URA 22,BATIMENT 220,F-91405 ORSAY,FRANCE. ACAD SCI CZECH REPUBL,INST PHYS,CZ-18040 PRAGUE 8,CZECH REPUBLIC. VIENNA TECH UNIV,INST TECH ELEKTROCHEM,A-1060 VIENNA,AUSTRIA. ACAD SCI CZECH REPUBL,INST PHYS MAT,CZ-61662 BRNO,CZECH REPUBLIC.}",
	doi = "{10.1103/PhysRevLett.76.4254}",
	issn = "{0031-9007}",
	keywords-plus = "{MAGNETORESISTANCE; MULTILAYERS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Bruno, Patrick/C-9159-2009 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Bruno, Patrick/0000-0002-2574-1943 KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{BOBO JF, 1993, EUROPHYS LETT, V24, P139, DOI 10.1209/0295-5075/24/2/011. BRUNO P, 1993, J MAGN MAGN MATER, V121, P248, DOI 10.1016/0304-8853(93)91197-F. BRUNO P, 1995, PHYS REV B, V52, P411, DOI 10.1103/PhysRevB.52.411. DUCASTELLE F, 1975, J PHYS C SOLID STATE, V8, P3297, DOI 10.1088/0022-3719/8/20/008. HATHAWAY KB, 1994, ULTRATHIN MAGNETIC S, V2. JOHNSON MT, 1995, PHYS REV LETT, V75, P4686, DOI 10.1103/PhysRevLett.75.4686. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. Kudrnovsky J, 1996, PHYS REV B, V53, P5125, DOI 10.1103/PhysRevB.53.5125. Mackintosh A. R., 1980, ELECTRONS FERMI SURF, P149. OKUNO SN, 1993, PHYS REV LETT, V70, P1711, DOI 10.1103/PhysRevLett.70.1711. PARKIN SSP, 1993, EUROPHYS LETT, V24, P71, DOI 10.1209/0295-5075/24/1/012. PARKIN SSP, 1990, PHYS REV LETT, V64, P2304, DOI 10.1103/PhysRevLett.64.2304. SANDRATSKII LM, 1986, J PHYS F MET PHYS, V16, pL43, DOI 10.1088/0305-4608/16/2/002. WEINERT M, 1985, PHYS REV B, V32, P2115, DOI 10.1103/PhysRevB.32.2115.}",
	number-of-cited-references = "{14}",
	times-cited = "{43}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{4}",
	journal-iso = "{Phys. Rev. Lett.}",
	doc-delivery-number = "{UM245}",
	unique-id = "{ISI:A1996UM24500039}"
}

J Kudrnovsky, V Drchal, C Blaas, I Turek and P Weinberger. New type of oscillatory exchange coupling induced by ordering in the magnetic layers. PHYSICAL REVIEW LETTERS 76(20):3834-3837, 1996. BibTeX

@article{ ISI:A1996UK56000044,
	author = "Kudrnovsky, J and Drchal, V and Blaas, C and Turek, I and Weinberger, P",
	title = "{New type of oscillatory exchange coupling induced by ordering in the magnetic layers}",
	journal = "{PHYSICAL REVIEW LETTERS}",
	year = "{1996}",
	volume = "{76}",
	number = "{20}",
	pages = "{3834-3837}",
	month = "{MAY 13}",
	abstract = "{We found that formation of an ordered phase in alloyed magnetic layers induces new periods of exchange coupling oscillations in metallic multilayer systems. We studied on an ab initio level the case of c(2 X 2) ordering of random Co50Fe50(001) magnetic slabs embedded in fcc Cu. The origin of the new periods can be correlated to critical points of the spacer Fermi surface folded down to the Brillouin zone corresponding to the c(2 X 2) superlattice.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), ACAD SCI CZECH REPUBL,INST PHYS,NA SLOVANCE 2,CR-18040 PRAGUE 8,CZECH REPUBLIC. TECH UNIV VIENNA,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA. ACAD SCI CZECH REPUBL,INST PHYS MAT,CR-61662 BRNO,CZECH REPUBLIC.}",
	doi = "{10.1103/PhysRevLett.76.3834}",
	issn = "{0031-9007}",
	keywords-plus = "{MULTILAYERS; FE}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{BRUNO P, 1992, PHYS REV B, V46, P261, DOI 10.1103/PhysRevB.46.261. DUCASTELLE F, 1991, ORDER PHASE STABILIT, pCH4. KROMPIEWSKI S, 1993, J MAGN MAGN MATER, V121, P238, DOI 10.1016/0304-8853(93)91195-D. KUDRNOVSKY J, 1994, PHYS REV B, V50, P9603, DOI 10.1103/PhysRevB.50.9603. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. Kudrnovsky J, 1996, PHYS REV B, V53, P5125, DOI 10.1103/PhysRevB.53.5125. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. MATHON J, 1993, J MAGN MAGN MATER, V127, pL261, DOI 10.1016/0304-8853(93)90040-9. MIRBT S, 1993, SOLID STATE COMMUN, V88, P331, DOI 10.1016/0038-1098(93)90519-S. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923, DOI 10.1103/PhysRevLett.71.1923. WANG Y, 1990, PHYS REV LETT, V65, P2732, DOI 10.1103/PhysRevLett.65.2732.}",
	number-of-cited-references = "{11}",
	times-cited = "{12}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Phys. Rev. Lett.}",
	doc-delivery-number = "{UK560}",
	unique-id = "{ISI:A1996UK56000044}"
}

J Kudrnovsky, V Drchal, I Turek, M Sob and P Weinberger. Interlayer magnetic coupling: Effect of disorder in spacer. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 156(1-3):245-246, Duben 1996. 2nd International Symposium on Metallic Multilayers (MML 95), CAVENDISH LAB, CAMBRIDGE, ENGLAND, SEP 11-14, 1995. BibTeX

@article{ ISI:A1996UV35800102,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Sob, M and Weinberger, P",
	title = "{Interlayer magnetic coupling: Effect of disorder in spacer}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{1996}",
	volume = "{156}",
	number = "{1-3}",
	pages = "{245-246}",
	month = "{APR}",
	note = "{2nd International Symposium on Metallic Multilayers (MML 95), CAVENDISH LAB, CAMBRIDGE, ENGLAND, SEP 11-14, 1995}",
	abstract = "{The influence of spacer randomness on the periods and the amplitudes of the oscillations of exchange coupling in magnetic multilayers is studied from first principles. The effect of disorder is treated within the coherent potential approximation. As a case study, results obtained for trilayers Co/Cu(1-x)M(x)/Co(001), where M = Ni, Pd, and Zn, are presented and discussed.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), ACAD SCI CZECH REPUBL,INST PHYS,CR-18040 PRAGUE 8,CZECH REPUBLIC. ACAD SCI CZECH REPUBL,INST PHYS MAT,CR-61662 BRNO,CZECH REPUBLIC. TECH UNIV VIENNA,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA.}",
	doi = "{10.1016/0304-8853(95)00854-3}",
	issn = "{0304-8853}",
	keywords-plus = "{EXCHANGE; MULTILAYERS}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	researcherid-numbers = "{Sob, Mojmir/D-1936-2012 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014 Sob, Mojmir/G-6865-2011}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748 }",
	cited-references = "{BOBO JF, 1994, J PHYS-CONDENS MAT, V6, P2689, DOI 10.1088/0953-8984/6/14/007. BRUNO P, 1992, PHYS REV B, V46, P261, DOI 10.1103/PhysRevB.46.261. GORDON B, 1978, IOP C P, V39, P402. Heinrich B., 1994, ULTRATHIN MAGNETIC S, P45. INOUE J, 1994, PHYS REV B, V50, P13541, DOI 10.1103/PhysRevB.50.13541. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. KUDROVSKY J, 1996, IN PRESS PHYS REV B, V53. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. OKUNO SN, 1993, PHYS REV LETT, V70, P1711, DOI 10.1103/PhysRevLett.70.1711. PARKIN SSP, 1993, MATER RES SOC SYMP P, V313, P179. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923, DOI 10.1103/PhysRevLett.71.1923.}",
	number-of-cited-references = "{11}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{UV358}",
	unique-id = "{ISI:A1996UV35800102}"
}

J Kudrnovsky, V Drchal, I Turek, M Sob and P Weinberger. Interlayer magnetic coupling: Effect of interface roughness. PHYSICAL REVIEW B 53(9):5125-5128, 1996. BibTeX

@article{ ISI:A1996UA01100024,
	author = "Kudrnovsky, J and Drchal, V and Turek, I and Sob, M and Weinberger, P",
	title = "{Interlayer magnetic coupling: Effect of interface roughness}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1996}",
	volume = "{53}",
	number = "{9}",
	pages = "{5125-5128}",
	month = "{MAR 1}",
	abstract = "{The effect of structural interface imperfections on the interlayer magnetic coupling is studied theoretically by considering (i) a macroscopic model of roughness for possible fluctuations of spacer thickness, and (ii) a microscopic model of interdiffusion at ideal interfaces. For the Co/Cu/Co(001) system, we found a dramatic decrease of the amplitudes of the oscillations even for a small amount of interface imperfections, particularly strong for the short period oscillations,and thus indicating a possible source of discrepancy between ab initio calculations and experiment.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{Kudrnovsky, J (Reprint Author), ACAD SCI CZECH REPUBL,INST PHYS,NA SLOVANCE 2,CR-18040 PRAGUE 8,CZECH REPUBLIC. VIENNA TECH UNIV,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA. ACAD SCI CZECH REPUBL,INST PHYS MAT,CR-61662 BRNO,CZECH REPUBLIC.}",
	doi = "{10.1103/PhysRevB.53.5125}",
	issn = "{0163-1829}",
	keywords-plus = "{MULTILAYERS; FE; SCATTERING}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Sob, Mojmir/D-1936-2012 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 Sob, Mojmir/G-6865-2011}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417 }",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. BRUNO E, 1993, J PHYS-CONDENS MAT, V5, P2109, DOI 10.1088/0953-8984/5/14/010. BRUNO P, 1993, J MAGN MAGN MATER, V121, P248, DOI 10.1016/0304-8853(93)91197-F. BRUNO P, 1991, PHYS REV LETT, V67, P1602, DOI 10.1103/PhysRevLett.67.1602. GUERNEY BA, 1990, IEEE T MAGN, V26, P2747. Heinrich B., 1994, ULTRATHIN MAGNETIC S, P45. INOUE J, 1994, PHYS REV B, V50, P13541, DOI 10.1103/PhysRevB.50.13541. KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105, DOI 10.1103/PhysRevB.50.16105. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. LLOYD P, 1972, ADV PHYS, V21, P69, DOI 10.1080/00018737200101268. MATHON J, 1995, PHYS REV LETT, V74, P3696, DOI 10.1103/PhysRevLett.74.3696. MIRBT S, 1993, SOLID STATE COMMUN, V88, P331, DOI 10.1016/0038-1098(93)90519-S. NORDSTROM L, 1994, PHYS REV B, V50, P13058, DOI 10.1103/PhysRevB.50.13058. PARKIN SSP, 1993, PHYS REV LETT, V71, P1641, DOI 10.1103/PhysRevLett.71.1641. Parkin S.S.P., 1994, ULTRATHIN MAGNETIC S, V2, P148. RABE A, 1994, PHYS REV LETT, V73, P2728, DOI 10.1103/PhysRevLett.73.2728. STOEFFLER D, 1991, PHYS REV B, V44, P10389, DOI 10.1103/PhysRevB.44.10389. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923, DOI 10.1103/PhysRevLett.71.1923. WANG Y, 1990, PHYS REV LETT, V65, P2732, DOI 10.1103/PhysRevLett.65.2732. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009.}",
	number-of-cited-references = "{21}",
	times-cited = "{65}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{UA011}",
	unique-id = "{ISI:A1996UA01100024}"
}

J Kudrnovsky, I Turek, V Drchal and M Sob. Self-consistent Green's function method for random surfaces and interfaces. In A Gonis, PEA Turchi and J Kudrnovsky (eds.). STABILITY OF MATERIALS 355. 1996, 237-264. NATO Advanced Study Institute on Stability of Materials, CORFU, GREECE, JUN 25-JUL 07, 1994. BibTeX

@inproceedings{ ISI:A1996BF84E00017,
	author = "Kudrnovsky, J and Turek, I and Drchal, V and Sob, M",
	editor = "{Gonis, A and Turchi, PEA and Kudrnovsky, J}",
	title = "{Self-consistent Green's function method for random surfaces and interfaces}",
	booktitle = "{STABILITY OF MATERIALS}",
	series = "{NATO ADVANCED SCIENCE INSTITUTES SERIES, SERIES B, PHYSICS}",
	year = "{1996}",
	volume = "{355}",
	pages = "{237-264}",
	note = "{NATO Advanced Study Institute on Stability of Materials, CORFU, GREECE, JUN 25-JUL 07, 1994}",
	organization = "{NATO, Sci Affairs Div; US DOE; Lawrence Livermore Natl Lab; Natl Sci Fdn; Univ Kentucky, Ctr Comp Sci}",
	publisher = "{PLENUM PRESS DIV PLENUM PUBLISHING CORP}",
	address = "{233 SPRING ST, NEW YORK, NY 10013}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{ACAD SCI CZECH REPUBL,INST PHYS,CZ-18040 PRAGUE 8,CZECH REPUBLIC.}",
	issn = "{0258-1221}",
	isbn = "{0-306-45311-8}",
	research-areas = "{Materials Science; Mathematics; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mathematics, Applied; Physics, Applied; Physics, Mathematical}",
	researcherid-numbers = "{Sob, Mojmir/D-1936-2012 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 Sob, Mojmir/G-6865-2011}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 }",
	number-of-cited-references = "{0}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{BF84E}",
	unique-id = "{ISI:A1996BF84E00017}"
}

V Drchal, J Kudrnovsky and I Turek. Effective ising Hamiltonian for surfaces of metallic alloys. In A Gonis, PEA Turchi and J Kudrnovsky (eds.). STABILITY OF MATERIALS 355. 1996, 355-360. NATO Advanced Study Institute on Stability of Materials, CORFU, GREECE, JUN 25-JUL 07, 1994. BibTeX

@inproceedings{ ISI:A1996BF84E00024,
	author = "Drchal, V and Kudrnovsky, J and Turek, I",
	editor = "{Gonis, A and Turchi, PEA and Kudrnovsky, J}",
	title = "{Effective ising Hamiltonian for surfaces of metallic alloys}",
	booktitle = "{STABILITY OF MATERIALS}",
	series = "{NATO ADVANCED SCIENCE INSTITUTES SERIES, SERIES B, PHYSICS}",
	year = "{1996}",
	volume = "{355}",
	pages = "{355-360}",
	note = "{NATO Advanced Study Institute on Stability of Materials, CORFU, GREECE, JUN 25-JUL 07, 1994}",
	organization = "{NATO, Sci Affairs Div; US DOE; Lawrence Livermore Natl Lab; Natl Sci Fdn; Univ Kentucky, Ctr Comp Sci}",
	publisher = "{PLENUM PRESS DIV PLENUM PUBLISHING CORP}",
	address = "{233 SPRING ST, NEW YORK, NY 10013}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{ACAD SCI CZECH REPUBL,INST PHYS,CR-18040 PRAGUE 8,CZECH REPUBLIC.}",
	issn = "{0258-1221}",
	isbn = "{0-306-45311-8}",
	research-areas = "{Materials Science; Mathematics; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mathematics, Applied; Physics, Applied; Physics, Mathematical}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417}",
	number-of-cited-references = "{0}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{BF84E}",
	unique-id = "{ISI:A1996BF84E00024}"
}

I Turek, J Kudrnovsky, M Sob and V Drchal. Itinerant magnetism of (001) surfaces of random nickel-copper and iron-vanadium alloys. In A Gonis, PEA Turchi and J Kudrnovsky (eds.). STABILITY OF MATERIALS 355. 1996, 431-436. NATO Advanced Study Institute on Stability of Materials, CORFU, GREECE, JUN 25-JUL 07, 1994. BibTeX

@inproceedings{ ISI:A1996BF84E00036,
	author = "Turek, I and Kudrnovsky, J and Sob, M and Drchal, V",
	editor = "{Gonis, A and Turchi, PEA and Kudrnovsky, J}",
	title = "{Itinerant magnetism of (001) surfaces of random nickel-copper and iron-vanadium alloys}",
	booktitle = "{STABILITY OF MATERIALS}",
	series = "{NATO ADVANCED SCIENCE INSTITUTES SERIES, SERIES B, PHYSICS}",
	year = "{1996}",
	volume = "{355}",
	pages = "{431-436}",
	note = "{NATO Advanced Study Institute on Stability of Materials, CORFU, GREECE, JUN 25-JUL 07, 1994}",
	organization = "{NATO, Sci Affairs Div; US DOE; Lawrence Livermore Natl Lab; Natl Sci Fdn; Univ Kentucky, Ctr Comp Sci}",
	publisher = "{PLENUM PRESS DIV PLENUM PUBLISHING CORP}",
	address = "{233 SPRING ST, NEW YORK, NY 10013}",
	type = "{Proceedings Paper}",
	language = "{English}",
	affiliation = "{ACAD SCI CZECH REPUBL,INST PHYS MAT,CZ-61662 BRNO,CZECH REPUBLIC.}",
	issn = "{0258-1221}",
	isbn = "{0-306-45311-8}",
	research-areas = "{Materials Science; Mathematics; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mathematics, Applied; Physics, Applied; Physics, Mathematical}",
	researcherid-numbers = "{Sob, Mojmir/D-1936-2012 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 Sob, Mojmir/G-6865-2011}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 }",
	number-of-cited-references = "{0}",
	times-cited = "{8}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	doc-delivery-number = "{BF84E}",
	unique-id = "{ISI:A1996BF84E00036}"
}

V NATOLI, MH COHEN, MV GANDUGLIAPIROVANO, J KUDRNOVSKY, I TUREK and V DRCHAL. THE ELECTRONIC-STRUCTURE OF A MODEL BIMETALLIC CATALYST - SYMMETRY-RESOLVED DENSITY-OF-STATES AT (GAMMA)OVER-BAR FOR CU/RU(111). SURFACE SCIENCE 331(A):716-722, 1995. 14th European Conference on Surface Science (ECOSS-14), LEIPZIG, GERMANY, SEP 19-23, 1994. BibTeX

@article{ ISI:A1995RJ78600124,
	author = "NATOLI, V and COHEN, MH and GANDUGLIAPIROVANO, MV and KUDRNOVSKY, J and TUREK, I and DRCHAL, V",
	title = "{THE ELECTRONIC-STRUCTURE OF A MODEL BIMETALLIC CATALYST - SYMMETRY-RESOLVED DENSITY-OF-STATES AT (GAMMA)OVER-BAR FOR CU/RU(111)}",
	journal = "{SURFACE SCIENCE}",
	year = "{1995}",
	volume = "{331}",
	number = "{A}",
	pages = "{716-722}",
	month = "{JUL 1}",
	note = "{14th European Conference on Surface Science (ECOSS-14), LEIPZIG, GERMANY, SEP 19-23, 1994}",
	organization = "{European Phys Soc; Int Union Vacuum Sci Tech \& Applicat; Deut Phys Gesell; Deut Bunsengesell Phys Chem}",
	abstract = "{The ruthenium hcp(0001) surface covered by a copper monolayer has become an important model system for investigating central questions regarding the catalytic behavior of bimetallic materials. We argue that the dominant modifications of the clean Ru surface electronic structure are relatively insensitive to the stacking of the layers near the surface, and we therefore carry out surface Green's function TB-LMTO computations to determine the symmetry- and layer-resolved density of states at k(\textbackslash{}\textbackslash{}) = O ((\$) over bar Gamma) for fee Cu/Ru(111), fee Cu(111) and fee Ru(111). At (\$) over bar Gamma there are two irreducible representations, a non-degenerate one, (\$) over bar Gamma(1), to which the s, p(z), and d(3z)(-r)(2)(2) states belong and a doubly degenerate one, (\$) over bar Gamma(2) to which the p(x), p(y); d(xy) d(x)(-y)(2)(2); and d(xy),d(yx) states belong. While we obtain various new surface resonances and bound states, our principal finding is that the Cu overlayer suppresses the upper (\$) over bar Gamma(2) subband of Ru at the surface. This finding suggests a simple theoretical interpretation of the X-ray spectroscopic observations and a possible basis for understanding the chemical behavior of this material.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{NATOLI, V (Reprint Author), EXXON RES \& ENGN CO, CORP RES SCI LABS, ANNANDALE, NJ 08801 USA. VIENNA TECH UNIV, INST TECH ELECTROCHEM, A-1060 VIENNA, AUSTRIA. ACAD SCI CZECH REPUBL, INST PHYS, CR-18040 PRAGUE 8, CZECH REPUBLIC. ACAD SCI CZECH REPUBL, INST PHYS MAT, CR-61662 BRNO, CZECH REPUBLIC.}",
	doi = "{10.1016/0039-6028(95)00140-9}",
	issn = "{0039-6028}",
	keywords = "{CATALYSIS; COPPER; GREENS FUNCTION METHODS; METALLIC SURFACES; RUTHENIUM; SURFACE ELECTRONIC PHENOMENA}",
	keywords-plus = "{X-RAY ABSORPTION; GREEN-FUNCTION; SURFACE; CU; COPPER; ADSORPTION; RUTHENIUM; RU(0001); CU(111); BULK}",
	research-areas = "{Chemistry; Physics}",
	web-of-science-categories = "{Chemistry, Physical; Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{CHRISTMANN K, 1980, J CATAL, V61, P397, DOI 10.1016/0021-9517(80)90387-5. COHEN MH, 1994, PHYS REV LETT, V72, P3222, DOI 10.1103/PhysRevLett.72.3222. COHEN MH, UNPUB J CHEM PHYS. COURTHS R, 1984, PHYS REP, V112, P53, DOI 10.1016/0370-1573(84)90167-4. CRAIG BI, 1988, J PHYS CHEM SOLIDS, V49, P957, DOI 10.1016/0022-3697(88)90013-3. FEIBELMAN PJ, 1986, SURF SCI, V173, pL582, DOI 10.1016/0039-6028(86)90099-3. GANDUGLIAPIROVA.MV, 1994, SURF SCI, V331. GANDUGLIAPIROVA.MV, IN PRESS PHYS REV B. HOLZWARTH NAW, 1985, SOLID STATE COMMUN, V53, P171, DOI 10.1016/0038-1098(85)90119-X. HOUSTON JE, 1986, PHYS REV LETT, V56, P375, DOI 10.1103/PhysRevLett.56.375. JACOB W, 1986, Z PHYS B CON MAT, V63, P459, DOI 10.1007/BF01726194. JEPSEN O, 1978, PHYS REV B, V18, P605, DOI 10.1103/PhysRevB.18.605. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. KUDRNOVSKY J, 1993, PHYS REV B, V47, P16525, DOI 10.1103/PhysRevB.47.16525. SHAM TK, 1988, J CHEM PHYS, V88, P475, DOI 10.1063/1.454628. SINFELT JH, 1988, INT REV PHYS CHEM, V7, P281, DOI 10.1080/01442358809353215. SINFELT JH, 1980, J CHEM PHYS, V72, P4832, DOI 10.1063/1.439821. SOHN KS, 1976, PHYS REV B, V14, P3185, DOI 10.1103/PhysRevB.14.3185. STOHR H, 1983, SURF SCI, V124, P99, DOI 10.1016/0039-6028(83)90338-2. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009.}",
	number-of-cited-references = "{20}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Surf. Sci.}",
	doc-delivery-number = "{RJ786}",
	unique-id = "{ISI:A1995RJ78600124}"
}

I TUREK, J KUDRNOVSKY, M SOB, V DRCHAL and P WEINBERGER. FERROMAGNETISM OF IMPERFECT ULTRATHIN RU AND RH FILMS ON A AG(OO1) SUBSTRATE. PHYSICAL REVIEW LETTERS 74(13):2551-2554, 1995. BibTeX

@article{ ISI:A1995QP22900037,
	author = "TUREK, I and KUDRNOVSKY, J and SOB, M and DRCHAL, V and WEINBERGER, P",
	title = "{FERROMAGNETISM OF IMPERFECT ULTRATHIN RU AND RH FILMS ON A AG(OO1) SUBSTRATE}",
	journal = "{PHYSICAL REVIEW LETTERS}",
	year = "{1995}",
	volume = "{74}",
	number = "{13}",
	pages = "{2551-2554}",
	month = "{MAR 27}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{TUREK, I (Reprint Author), ACAD SCI CZECH REPUBL,INST PHYS MAT,CR-61662 BRNO,CZECH REPUBLIC. ACAD SCI CZECH REPUBL,INST PHYS,CR-18040 PRAGUE,CZECH REPUBLIC. VIENNA TECH UNIV,INST TECH ELEKTROCHEM,A-1060 VIENNA,AUSTRIA.}",
	doi = "{10.1103/PhysRevLett.74.2551}",
	issn = "{0031-9007}",
	keywords-plus = "{TRANSITION-METAL MONOLAYERS; 4D; AG(001); AG; OVERLAYERS; MAGNETISM; SURFACES; PD}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Multidisciplinary}",
	researcherid-numbers = "{Sob, Mojmir/D-1936-2012 KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 Sob, Mojmir/G-6865-2011}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417 }",
	cited-references = "{ALTMAN EI, 1994, SURF SCI, V304, pL400, DOI 10.1016/0039-6028(94)90740-4. BLUGEL S, 1992, EUROPHYS LETT, V18, P257, DOI 10.1209/0295-5075/18/3/012. BLUGEL S, 1992, PHYS REV LETT, V68, P851, DOI 10.1103/PhysRevLett.68.851. BLUGEL S, 1995, PHYS REV B, V51, P2025, DOI 10.1103/PhysRevB.51.2025. BLUGEL S, 1992, SOLID STATE COMMUN, V84, P621, DOI 10.1016/0038-1098(92)90203-L. DEMANGEAT C, 1993, P INT C PHYS TRANS M, P488. ERIKSSON O, 1991, PHYS REV LETT, V66, P1350, DOI 10.1103/PhysRevLett.66.1350. HERGERT W, 1993, J MAGN MAGN MATER, V126, P310, DOI 10.1016/0304-8853(93)90611-5. KLEINMAN L, 1993, P INT C PHYS TRANS M, P482. LANG P, 1994, SOLID STATE COMMUN, V92, P755, DOI 10.1016/0038-1098(94)90767-6. LI H, 1991, PHYS REV B, V44, P1438, DOI 10.1103/PhysRevB.44.1438. LIU C, 1991, PHYS REV B, V44, P12062, DOI 10.1103/PhysRevB.44.12062. MULHOLLAN GA, 1991, PHYS REV B, V44, P2393, DOI 10.1103/PhysRevB.44.2393. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. TUREK I, 1991, J MAGN MAGN MATER, V98, P119, DOI 10.1016/0304-8853(91)90436-E. TUREK I, 1994, PHYS REV B, V49, P3352, DOI 10.1103/PhysRevB.49.3352. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WEINERT M, 1993, MAGNETIC MULTILAYERS. WILLENBORG K, 1992, EUROPHYS LETT, V18, P263, DOI 10.1209/0295-5075/18/3/013. WU RQ, 1992, PHYS REV B, V45, P7222, DOI 10.1103/PhysRevB.45.7222. ZHU MJ, 1991, PHYS REV B, V43, P4007, DOI 10.1103/PhysRevB.43.4007.}",
	number-of-cited-references = "{21}",
	times-cited = "{33}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Phys. Rev. Lett.}",
	doc-delivery-number = "{QP229}",
	unique-id = "{ISI:A1995QP22900037}"
}

J KUDRNOVSKY, V DRCHAL, I TUREK and P WEINBERGER. AB-INITIO THEORY OF MAGNETIC COUPLING OF INTERFACES. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 140(1):511-512, Únor 1995. International Conference on Magnetism - ICM 94 (13th IUPAP Triennial Conference on Magnetism), WARSAW, POLAND, AUG 22-26, 1994. BibTeX

@article{ ISI:A1995QL73600245,
	author = "KUDRNOVSKY, J and DRCHAL, V and TUREK, I and WEINBERGER, P",
	title = "{AB-INITIO THEORY OF MAGNETIC COUPLING OF INTERFACES}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{1995}",
	volume = "{140}",
	number = "{1}",
	pages = "{511-512}",
	month = "{FEB}",
	note = "{International Conference on Magnetism - ICM 94 (13th IUPAP Triennial Conference on Magnetism), WARSAW, POLAND, AUG 22-26, 1994}",
	organization = "{INT UNION PURE \& APPL PHYS}",
	abstract = "{A theory of interface-interface interactions in metallic magnetic multilayers is developed which takes into account two-dimensional translational symmetry via a surface Green's function technique within the tight-binding linear muffin-tin orbital method. This new approach is applied to different geometrical arrangements, namely to the cases of two Co(001) monolayers in a bulk Cu spacer, and to a Cu spacer between two Co(001) semi-infinite slabs. The pronounced suppression of the long period oscillations was found in the latter case.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{KUDRNOVSKY, J (Reprint Author), ACAD SCI CZECH REPUBL,INST PHYS,CR-18040 PRAGUE 8,CZECH REPUBLIC. ACAD SCI CZECH REPUBL,INST PHYS MAT,CR-61662 BRNO,CZECH REPUBLIC. TECH UNIV VIENNA,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA.}",
	doi = "{10.1016/0304-8853(94)00999-6}",
	issn = "{0304-8853}",
	keywords-plus = "{EXCHANGE; MULTILAYERS}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 KUDRNOVSKY, Josef/G-5581-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 KUDRNOVSKY, Josef/0000-0002-9968-6748}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. BRUNO E, 1993, J PHYS-CONDENS MAT, V5, P2109, DOI 10.1088/0953-8984/5/14/010. BRUNO P, 1993, J MAGN MAGN MATER, V121, P248, DOI 10.1016/0304-8853(93)91197-F. BRUNO P, 1991, PHYS REV LETT, V67, P1602, DOI 10.1103/PhysRevLett.67.1602. BRUNO P, IN PRESS. EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85, DOI 10.1016/0304-8853(91)90308-W. GARCIAMOLINER F, 1986, PROG SURF SCI, V21, P93, DOI 10.1016/0079-6816(86)90011-0. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. NORDSTROM L, IN PRESS PHYS REV B. RUDERMAN MA, 1954, PHYS REV, V96, P99, DOI 10.1103/PhysRev.96.99. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923, DOI 10.1103/PhysRevLett.71.1923. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009.}",
	number-of-cited-references = "{12}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{QL736}",
	unique-id = "{ISI:A1995QL73600245}"
}

J KUDRNOVSKY, V DRCHAL, I TUREK and P WEINBERGER. MAGNETIC COUPLING OF INTERFACES - A SURFACE GREENS-FUNCTION APPROACH. PHYSICAL REVIEW B 50(21):16105-16108, 1994. BibTeX

@article{ ISI:A1994PV86200076,
	author = "KUDRNOVSKY, J and DRCHAL, V and TUREK, I and WEINBERGER, P",
	title = "{MAGNETIC COUPLING OF INTERFACES - A SURFACE GREENS-FUNCTION APPROACH}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1994}",
	volume = "{50}",
	number = "{21}",
	pages = "{16105-16108}",
	month = "{DEC 1}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Note}",
	language = "{English}",
	affiliation = "{KUDRNOVSKY, J (Reprint Author), ACAD SCI CZECH REPUBL,INST PHYS,CR-18040 PRAGUE 8,CZECH REPUBLIC. VIENNA TECH UNIV,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA. ACAD SCI CZECH REPUBL,INST PHYS MAT,CR-61662 BRNO,CZECH REPUBLIC.}",
	doi = "{10.1103/PhysRevB.50.16105}",
	issn = "{0163-1829}",
	keywords-plus = "{NONMAGNETIC METALLIC LAYER; EXCHANGE; OSCILLATIONS; MULTILAYERS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. BRUNO E, 1993, J PHYS-CONDENS MAT, V5, P2109, DOI 10.1088/0953-8984/5/14/010. BRUNO P, 1993, J MAGN MAGN MATER, V121, P248, DOI 10.1016/0304-8853(93)91197-F. BRUNO P, 1992, PHYS REV B, V46, P261, DOI 10.1103/PhysRevB.46.261. BRUNO P, 1991, PHYS REV LETT, V67, P1602, DOI 10.1103/PhysRevLett.67.1602. BRUNO P, UNPUB. DRCHAL V, 1992, PHYS REV B, V45, P14328, DOI 10.1103/PhysRevB.45.14328. EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85, DOI 10.1016/0304-8853(91)90308-W. EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941, DOI 10.1088/0953-8984/3/26/015. GARCIAMOLINER F, 1986, PROG SURF SCI, V21, P93, DOI 10.1016/0079-6816(86)90011-0. KALKSTEIN D, 1971, SURF SCI, V26, P85, DOI 10.1016/0039-6028(71)90115-4. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. LANG P, 1993, PHYS REV LETT, V71, P1927, DOI 10.1103/PhysRevLett.71.1927. LLOYD P, 1972, ADV PHYS, V21, P69, DOI 10.1080/00018737200101268. LOWDIN PO, 1992, J MATH PHYS, V3, P967. NORDSTROM L, 1994, PHYS REV B, V50, P13058, DOI 10.1103/PhysRevB.50.13058. PARKIN SSP, 1990, PHYS REV LETT, V64, P2304, DOI 10.1103/PhysRevLett.64.2304. RUDERMAN MA, 1954, PHYS REV, V96, P99, DOI 10.1103/PhysRev.96.99. STILES MD, 1993, PHYS REV B, V48, P7238, DOI 10.1103/PhysRevB.48.7238. STOEFFLER D, 1990, PROG THEOR PHYS S, V101, P139, DOI 10.1143/PTPS.101.139. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923, DOI 10.1103/PhysRevLett.71.1923. VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P3870, DOI 10.1103/PhysRevLett.71.3870. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009.}",
	number-of-cited-references = "{24}",
	times-cited = "{52}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{PV862}",
	unique-id = "{ISI:A1994PV86200076}"
}

J KUDRNOVSKY, I TUREK, A PASTUREL, R TETOT, V DRCHAL and P WEINBERGER. MAGNETISM-INDUCED ORDERING IN 2 AND 3 DIMENSIONS. PHYSICAL REVIEW B 50(13):9603-9606, 1994. BibTeX

@article{ ISI:A1994PL41200083,
	author = "KUDRNOVSKY, J and TUREK, I and PASTUREL, A and TETOT, R and DRCHAL, V and WEINBERGER, P",
	title = "{MAGNETISM-INDUCED ORDERING IN 2 AND 3 DIMENSIONS}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1994}",
	volume = "{50}",
	number = "{13}",
	pages = "{9603-9606}",
	month = "{OCT 1}",
	abstract = "{A first-principles theory of alloy ordering in two and three dimensions in the presence of ferromagnetism is described. Using the generalized perturbation method, the order-disorder transition from the bcc Fe50Co50 random alloy into the ordered CsCl-structure FeCo alloy and its ordering temperature are found to agree reasonably well with available experimental data. A similar ordering tendency for the formation of the ordered c(2 x 2) phase of the Fe50Co50 surface alloy on fcc Cu(001) is investigated.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Note}",
	language = "{English}",
	affiliation = "{KUDRNOVSKY, J (Reprint Author), ACAD SCI CZECH REPUBL, INST PHYS, CS-18040 PRAGUE 8, CZECH REPUBLIC. TECH UNIV VIENNA, INST TECH ELECTROCHEM, A-1060 VIENNA, AUSTRIA. ACAD SCI CZECH REPUBL, INST PHYS MAT, CS-61662 BRNO, CZECH REPUBLIC. DOMAINE UNIV, THERMODYNAM \& PHYSICO CHIM MET LAB, F-38402 ST MARTIN DHERES, FRANCE. UNIV PARIS 11, CTR ORSAY, COMPOSES NON STOECHIOMETR LAB, F-91405 ORSAY, FRANCE.}",
	doi = "{10.1103/PhysRevB.50.9603}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{TRANSITION-METAL ALLOYS; ELECTRONIC-STRUCTURE; CLUSTER INTERACTIONS; COMPOSITIONAL ORDER; CONSISTENT}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014 Turek, Ilja/G-5553-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417 }",
	cited-references = "{BIEBER A, 1991, J MAGN MAGN MATER, V99, P293, DOI 10.1016/0304-8853(91)90077-N. Binder K., 1991, MONTE CARLO METHODS. DRCHAL V, 1992, PHYS REV B, V45, P14328, DOI 10.1103/PhysRevB.45.14328. Ducastelle F., 1991, ORDER PHASE STABILIT. DUCASTELLE F, 1989, NATO ASI SERIES E, V163, P293. GAUTIER F, 1984, HIGH TEMPERATURE ALL, P289. GONIS A, 1987, PHYS REV B, V36, P4630, DOI 10.1103/PhysRevB.36.4630. Inden G., 1982, B ALLOY PHASE DIAGRA, V2, P412, DOI 10.1007/BF02876141. Khachaturyan A. G., 1983, THEORY STRUCTURAL TR. KIKUCHI R, 1951, PHYS REV, V81, P988, DOI 10.1103/PhysRev.81.988. KUDRNOVSKY J, 1992, PHYS REV LETT, V69, P308, DOI 10.1103/PhysRevLett.69.308. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. PINSKI FJ, 1991, PHYS REV LETT, V66, P766, DOI 10.1103/PhysRevLett.66.766. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. STAUNTON JB, 1990, PHYS REV LETT, V65, P1259, DOI 10.1103/PhysRevLett.65.1259. STAUNTON JB, 1990, PHILOS MAG B, V61, P773, DOI 10.1080/13642819008219310. TUREK I, 1994, PHYS REV B, V49, P3352, DOI 10.1103/PhysRevB.49.3352.}",
	number-of-cited-references = "{18}",
	times-cited = "{21}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{PL412}",
	unique-id = "{ISI:A1994PL41200083}"
}

J KUDRNOVSKY, I TUREK, V DRCHAL and P WEINBERGER. ELECTRONIC-PROPERTIES OF RANDOM MAGNETIC-SURFACES. PROGRESS IN SURFACE SCIENCE 46(2-3):159-175, 1994. VIth Symposium on Surface Physics, CHLUM CASTLE, CZECH REPUBLIC, MAY 24-28, 1993. BibTeX

@article{ ISI:A1994NR69200006,
	author = "KUDRNOVSKY, J and TUREK, I and DRCHAL, V and WEINBERGER, P",
	title = "{ELECTRONIC-PROPERTIES OF RANDOM MAGNETIC-SURFACES}",
	journal = "{PROGRESS IN SURFACE SCIENCE}",
	year = "{1994}",
	volume = "{46}",
	number = "{2-3}",
	pages = "{159-175}",
	month = "{JUN-JUL}",
	note = "{VIth Symposium on Surface Physics, CHLUM CASTLE, CZECH REPUBLIC, MAY 24-28, 1993}",
	organization = "{ACAD SCI CZECH REPUBLIC, INST PHYS; UNION CZECH MATHEMATICIANS \& PHYSICISTS; INT UNION PURE \& APPL PHYS}",
	abstract = "{We have developed a self-consistent spin-Polarized Green's function technique within the local spin-density formalism which is suitable for an efficient and reliable description of the electronic and magnetic properties of random transition metal surfaces. The all-electron linear muffin-tin orbital method in the tight-binding representation is used to describe the electronic states, while the semi-infinite nature of the system is incorporated within the surface Green's function approach. The potentials are treated within the atomic sphere approximation including both the monopole and the dipole components of the charge density. The effect of disorder is treated within the coherent potential approximation. Applications to random FeCo overlayers on a non-random fcc Cu(001) substrate are shown.}",
	publisher = "{PERGAMON-ELSEVIER SCIENCE LTD}",
	address = "{THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{KUDRNOVSKY, J (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS,CS-18040 PRAGUE 8,CZECH REPUBLIC. CZECHOSLOVAK ACAD SCI,INST PHYS MET,CS-61662 BRNO,CZECH REPUBLIC. VIENNA TECH UNIV,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA.}",
	doi = "{10.1016/0079-6816(94)90076-0}",
	issn = "{0079-6816}",
	keywords-plus = "{THIN-FILM MAGNETISM; GREEN-FUNCTION; INTERFACE; ALLOYS; OVERLAYERS; ENERGIES; METALS}",
	research-areas = "{Chemistry; Physics}",
	web-of-science-categories = "{Chemistry, Physical; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 KUDRNOVSKY, Josef/G-5581-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{ALDEN M, 1992, PHYS REV B, V46, P6303, DOI 10.1103/PhysRevB.46.6303. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. CRAMPIN S, 1992, PHYS REV B, V45, P464, DOI 10.1103/PhysRevB.45.464. CUNNINGHAM SL, 1974, PHYS REV B, V10, P4988, DOI 10.1103/PhysRevB.10.4988. FALICOV LM, 1990, J MATER RES, V5, P1299, DOI 10.1557/JMR.1990.1299. FREEMAN AJ, 1991, J MAGN MAGN MATER, V100, P497, DOI 10.1016/0304-8853(91)90837-Z. INGLESFIELD JE, 1988, PHYS REV B, V37, P6682, DOI 10.1103/PhysRevB.37.6682. JEPSEN O, 1982, PHYS REV B, V26, P2790, DOI 10.1103/PhysRevB.26.2790. KUDRNOVSKY J, 1991, PHYS REV B, V44, P4068, DOI 10.1103/PhysRevB.44.4068. KUDRNOVSKY J, 1991, PHYS REV B, V44, P6410, DOI 10.1103/PhysRevB.44.6410. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. KUDRNOVSKY J, 1993, IN PRESS PHYS REV B, V47. LI C, 1990, J MAGN MAGN MATER, V83, P51, DOI 10.1016/0304-8853(90)90428-S. MACLAREN JM, 1989, PHYS REV B, V40, P12164, DOI 10.1103/PhysRevB.40.12164. METHFESSEL M, 1992, PHYS REV B, V46, P4816, DOI 10.1103/PhysRevB.46.4816. RICHTER R, 1988, J PHYS F MET PHYS, V18, P1813, DOI 10.1088/0305-4608/18/8/017. SKRIVER HL, 1992, PHYS REV B, V46, P7157, DOI 10.1103/PhysRevB.46.7157. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009.}",
	number-of-cited-references = "{21}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Prog. Surf. Sci.}",
	doc-delivery-number = "{NR692}",
	unique-id = "{ISI:A1994NR69200006}"
}

I TUREK, J KUDRNOVSKY, V DRCHAL and P WEINBERGER. ITINERANT MAGNETISM OF DISORDERED FE-CO AND NI-CU ALLOYS IN 2-DIMENSIONS AND 3-DIMENSIONS. PHYSICAL REVIEW B 49(5):3352-3362, 1994. BibTeX

@article{ ISI:A1994MW34900046,
	author = "TUREK, I and KUDRNOVSKY, J and DRCHAL, V and WEINBERGER, P",
	title = "{ITINERANT MAGNETISM OF DISORDERED FE-CO AND NI-CU ALLOYS IN 2-DIMENSIONS AND 3-DIMENSIONS}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1994}",
	volume = "{49}",
	number = "{5}",
	pages = "{3352-3362}",
	month = "{FEB 1}",
	abstract = "{The electronic structure and band magnetism of disordered Fe100-xCox and Ni100-xCux bulk alloys and of corresponding disordered overlayers on an fee Cu(001) substrate were studied by means of the first-principles tight-binding linear muffin-tin orbital coherent potential approximation method. For the Fe-Co system, we found that the composition dependence of the averaged and the local Fe magnetic moments is strongly affected by the dimensionality of the system while the local Co moments remain nearly constant. In the bulk bcc alloys, a nonmonotonic behavior of the averaged magnetization occurs due to the transition from weak to strong ferromagnetism. The averaged magnetization of the random overlayers depends linearly on the composition while the local Fe and Co moments are constant since the strong ferromagnetism is stabilized by the substrate throughout the whole composition range. For the Ni-Cu system, a transition from ferromagnetism to paramagnetism is found both in the bulk fee alloys and in the overlayers. The ferromagnetism of the overlayers is reduced in comparison to the bulk systems of the same composition. The concentration trends of local densities of states, local numbers of electrons, and work functions are discussed.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{TUREK, I (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS MET,61662 BRNO,CZECH REPUBLIC. CZECHOSLOVAK ACAD SCI,INST PHYS,18040 PRAGUE 8,CZECH REPUBLIC. TECH UNIV VIENNA,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA.}",
	doi = "{10.1103/PhysRevB.49.3352}",
	issn = "{0163-1829}",
	keywords-plus = "{THIN-FILM MAGNETISM; ELECTRONIC-STRUCTURE; GREEN-FUNCTION; SURFACE; INTERFACE; METALS; OVERLAYERS; ENERGIES; COBALT; NICKEL}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{ALDEN M, 1992, PHYS REV B, V46, P6303, DOI 10.1103/PhysRevB.46.6303. Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. BARDOS DI, 1969, J APPL PHYS, V40, P1371, DOI 10.1063/1.1657673. BLUGEL S, 1987, PHYS REV B, V35, P3271, DOI 10.1103/PhysRevB.35.3271. CRAMPIN S, 1992, PHYS REV B, V45, P464, DOI 10.1103/PhysRevB.45.464. FALICOV LM, 1990, J MATER RES, V5, P1299, DOI 10.1557/JMR.1990.1299. FREEMAN AJ, 1991, J MAGN MAGN MATER, V100, P497, DOI 10.1016/0304-8853(91)90837-Z. GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337, DOI 10.1088/0305-4608/15/6/018. HASS KC, 1984, PHYS REV B, V29, P3697, DOI 10.1103/PhysRevB.29.3697. HIMPSEL FJ, 1991, PHYS REV LETT, V67, P2363, DOI 10.1103/PhysRevLett.67.2363. KASPAR J, 1983, J PHYS F MET PHYS, V13, P311, DOI 10.1088/0305-4608/13/2/008. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. KUDRNOVSKY J, 1993, PHYS REV B, V47, P16525, DOI 10.1103/PhysRevB.47.16525. KUDRNOVSKY J, IN PRESS PROGR SURF. LI C, 1990, J MAGN MAGN MATER, V83, P51, DOI 10.1016/0304-8853(90)90428-S. MEDINA RA, 1977, PHYS REV B, V15, P1539, DOI 10.1103/PhysRevB.15.1539. METHFESSEL M, 1992, PHYS REV B, V46, P4816, DOI 10.1103/PhysRevB.46.4816. MORUZZI VL, 1978, CALCULATED ELECTRONI. RICHTER R, 1988, J PHYS F MET PHYS, V18, P1813, DOI 10.1088/0305-4608/18/8/017. RICHTER R, 1988, PHYS SCRIPTA, V37, P948, DOI 10.1088/0031-8949/37/6/022. RICKAYZEN G, 1980, GREENS FUNCTIONS CON, P312. SCHWARZ K, 1984, J PHYS F MET PHYS, V14, P2659, DOI 10.1088/0305-4608/14/11/021. SHINJO T, 1991, SURF SCI REP, V12, P49. SKRIVER HL, 1992, PHYS REV B, V46, P7157, DOI 10.1103/PhysRevB.46.7157. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. TERSOFF J, 1982, PHYS REV B, V25, P4937, DOI 10.1103/PhysRevB.25.4937. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WANG DS, 1982, PHYS REV B, V26, P1340, DOI 10.1103/PhysRevB.26.1340. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009.}",
	number-of-cited-references = "{31}",
	times-cited = "{58}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{MW349}",
	unique-id = "{ISI:A1994MW34900046}"
}

I TUREK and J HAFNER. METALLIC AND SEMICONDUCTING PHASES OF METAL-DOPED FULLERIDES. PHYSICAL REVIEW B 48(20):14925-14935, 1993. BibTeX

@article{ ISI:A1993MK54000014,
	author = "TUREK, I and HAFNER, J",
	title = "{METALLIC AND SEMICONDUCTING PHASES OF METAL-DOPED FULLERIDES}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1993}",
	volume = "{48}",
	number = "{20}",
	pages = "{14925-14935}",
	month = "{NOV 15}",
	abstract = "{We present first-principles calculations of the electronic structure of crystalline fullerite (C-60) and of several metal-doped A(x)C(60) fullerides (A =K,Ca,Sr,Ba and x = 3, and Ca5C60). Whereas the alkali-metal-doped A(3)C(60) phases are metallic for A =K,Rb,Cs, the alkaline-earth-doped A(3)C(60) fullerides with A =Ca,Sr,Ba are narrow-gap semiconductors. This corresponds to complete electron transfers to the C-60 molecules and the formation of C-60(6-) hexa-anions. The Ca5C60 phase is metallic and shows a strong hybridization of the Ca ions over the tetrahedral and octahedral interstices of the face-centered cubic lattice of the C-60 molecules. Detailed calculations of the photoemission and inverse photoemission spectra are presented.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{TUREK, I (Reprint Author), TECH UNIV WIEN,INST THEORET PHYS,WIEDNER HAUPTSTR 8-10,A-1040 VIENNA,AUSTRIA.}",
	doi = "{10.1103/PhysRevB.48.14925}",
	issn = "{1098-0121}",
	keywords-plus = "{ORIENTATIONAL ORDERING TRANSITION; ELECTRONIC-STRUCTURE; INVERSE PHOTOEMISSION; SOLID C60; FERMI-LEVEL; BAND-GAP; C-60; STATES; SUPERCONDUCTIVITY; SPECTRA}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060. ANDERSEN OK, 1985, HIGHLINGHTS CONDENSE. ANTROPOV VP, 1992, PHYS REV B, V46, P13647, DOI 10.1103/PhysRevB.46.13647. BENNING PJ, 1991, PHYS REV B, V44, P1962, DOI 10.1103/PhysRevB.44.1962. BENNING PJ, 1991, SCIENCE, V252, P1418. CARDONA M, 1979, PHOTOEMISSION SOLIDS, V1. CHEN CT, 1991, NATURE, V352, P603, DOI 10.1038/352603a0. CHEN Y, 1988, PHYS REV B, V37, P283, DOI 10.1103/PhysRevB.37.283. CHEN Y, 1992, PHYS REV B, V46, P7961, DOI 10.1103/PhysRevB.46.7961. CHEN Y, 1992, PHYS REV B, V45, P8845, DOI 10.1103/PhysRevB.45.8845. ERWIN SC, 1991, PHYS REV LETT, V67, P1610, DOI 10.1103/PhysRevLett.67.1610. ERWIN SC, 1991, SCIENCE, V254, P842, DOI 10.1126/science.254.5033.842. FLEMING RM, 1991, NATURE, V352, P701, DOI 10.1038/352701a0. GONIS A, 1992, GREENS FUNCTIONS ORD, P537. GU C, 1992, PHYS REV B, V45, P6348, DOI 10.1103/PhysRevB.45.6348. HADDON RC, 1991, NATURE, V350, P320, DOI 10.1038/350320a0. HEBARD AF, 1991, NATURE, V350, P600, DOI 10.1038/350600a0. HEINEY PA, 1991, PHYS REV LETT, V66, P2911, DOI 10.1103/PhysRevLett.66.2911. HIMPSEL FJ, 1990, SURF SCI REP, V12, P1. JANK W, 1990, J PHYS-CONDENS MAT, V2, P5065, DOI 10.1088/0953-8984/2/22/025. JANK W, 1990, PHYS REV B, V42, P6926, DOI 10.1103/PhysRevB.42.6926. JARLBORG T, 1979, J PHYS C SOLID STATE, V12, P265, DOI 10.1088/0022-3719/12/2/014. JOST MB, 1991, PHYS REV B, V44, P1966, DOI 10.1103/PhysRevB.44.1966. KOENIG C, 1981, J PHYS LETT-PARIS, V42, pL193. KORTAN AR, 1992, NATURE, V355, P529, DOI 10.1038/355529a0. LAMBRECHT WRL, 1986, PHYS REV B, V34, P2439, DOI 10.1103/PhysRevB.34.2439. LEHMANN G, 1972, PHYS STATUS SOLIDI B, V54, P469, DOI 10.1002/pssb.2220540211. LI YZ, 1992, PHYS REV B, V46, P12914, DOI 10.1103/PhysRevB.46.12914. LOF RW, 1992, PHYS REV LETT, V68, P3924, DOI 10.1103/PhysRevLett.68.3924. MARTINS JL, 1992, PHYS REV B, V46, P1766, DOI 10.1103/PhysRevB.46.1766. MINTMIRE JW, 1991, PHYS REV B, V43, P14281, DOI 10.1103/PhysRevB.43.14281. MURPHY DW, 1992, J PHYS CHEM SOLIDS, V53, P1321, DOI 10.1016/0022-3697(92)90230-B. NOVIKOV DL, 1992, PHYSICA C, V191, P399, DOI 10.1016/0921-4534(92)90936-7. OSHIYAMA A, 1992, SOLID STATE COMMUN, V82, P41, DOI 10.1016/0038-1098(92)90403-V. PENDRY JB, 1981, J PHYS C SOLID STATE, V14, P1381, DOI 10.1088/0022-3719/14/9/022. RABENAU T, 1993, Z PHYS B CON MAT, V90, P69, DOI 10.1007/BF01321034. REDINGER J, 1986, Z PHYS B CON MAT, V63, P321, DOI 10.1007/BF01303812. ROSSEINSKY MJ, 1992, NATURE, V356, P416, DOI 10.1038/356416a0. SACHIDANANDAM R, 1991, PHYS REV LETT, V67, P1467, DOI 10.1103/PhysRevLett.67.1467. SAITO S, 1991, PHYS REV B, V44, P11536, DOI 10.1103/PhysRevB.44.11536. SAITO S, 1992, SOLID STATE COMMUN, V83, P107, DOI 10.1016/0038-1098(92)90885-D. SAITO Y, 1992, CHEM PHYS LETT, V189, P236, DOI 10.1016/0009-2614(92)85131-S. SATPATHY S, 1992, PHYS REV B, V46, P1773, DOI 10.1103/PhysRevB.46.1773. Skriver H., 1984, LMTO METHOD. SZPUNAR B, 1992, EUROPHYS LETT, V18, P445, DOI 10.1209/0295-5075/18/5/012. TAKAHASHI T, 1992, PHYS REV LETT, V68, P1232, DOI 10.1103/PhysRevLett.68.1232. TANIGAKI K, 1992, NATURE, V356, P419, DOI 10.1038/356419a0. TROULLIER N, 1992, PHYS REV B, V46, P1754, DOI 10.1103/PhysRevB.46.1754. TYCKO R, 1991, PHYS REV LETT, V67, P1886, DOI 10.1103/PhysRevLett.67.1886. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. WEAVER JH, 1992, J PHYS CHEM SOLIDS, V53, P1433, DOI 10.1016/0022-3697(92)90237-8. WEAVER JH, 1991, PHYS REV LETT, V66, P1741, DOI 10.1103/PhysRevLett.66.1741. WERTHEIM GK, 1992, SOLID STATE COMMUN, V83, P785, DOI 10.1016/0038-1098(92)90027-7. WERTHEIM GK, 1991, SCIENCE, V252, P1419, DOI 10.1126/science.252.5011.1419. WIECH G, 1992, SOLID STATE COMMUN, V83, P731, DOI 10.1016/0038-1098(92)90153-Z. WINTER J, 1992, SOLID STATE COMMUN, V84, P935, DOI 10.1016/0038-1098(92)90796-C. ZHOU O, 1991, NATURE, V351, P462, DOI 10.1038/351462a0.}",
	number-of-cited-references = "{57}",
	times-cited = "{13}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{MK540}",
	unique-id = "{ISI:A1993MK54000014}"
}

MV GANDUGLIAPIROVANO, J KUDRNOVSKY, I TUREK, V DRCHAL and MH COHEN. ELECTRONIC-STRUCTURE OF RANDOM AG-PD AND AG-VACANCY OVERLAYERS ON A FCC PD(001) SUBSTRATE. PHYSICAL REVIEW B 48(3):1870-1876, 1993. BibTeX

@article{ ISI:A1993LP05000061,
	author = "GANDUGLIAPIROVANO, MV and KUDRNOVSKY, J and TUREK, I and DRCHAL, V and COHEN, MH",
	title = "{ELECTRONIC-STRUCTURE OF RANDOM AG-PD AND AG-VACANCY OVERLAYERS ON A FCC PD(001) SUBSTRATE}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1993}",
	volume = "{48}",
	number = "{3}",
	pages = "{1870-1876}",
	month = "{JUL 15}",
	abstract = "{The electronic structure and properties of two different types of random Ag overlayers on a non-random Pd(001) substrate have been studied. One overlayer is an Ag-Pd alloy and the other is Ag plus vacancies. Calculations were performed by means of a self-consistent, surface Green's-function technique based on the tight-binding linear-muffin-tin-orbital theory. The disorder was included via the coherent-potential approximation generalized to inhomogeneous systems. The layer-resolved local densities of states and the work functions were obtained.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{GANDUGLIAPIROVANO, MV (Reprint Author), EXXON RES \& ENGN CO,CORP RES SCI LABS,ANNANDALE,NJ 08801, USA. CZECHOSLOVAK ACAD SCI,INST PHYS,CS-18040 PRAGUE 8,CZECHOSLOVAKIA. CZECHOSLOVAK ACAD SCI,INST PHYS MET,CS-61662 BRNO,CZECHOSLOVAKIA.}",
	doi = "{10.1103/PhysRevB.48.1870}",
	issn = "{0163-1829}",
	keywords-plus = "{GREEN-FUNCTION; SURFACES; ALLOYS; INTERFACES; SYSTEMS; PD(100)}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Andersen O. K., 1986, ELECT BAND STRUCTURE, DOI 10.1007/3540180982\_1. CAPEHART TW, 1983, J VAC SCI TECHNOL, V264, P1214. CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566. CUNNINGHAM SL, 1974, PHYS REV B, V10, P4988, DOI 10.1103/PhysRevB.10.4988. DRCHAL V, 1992, PHYS REV B, V45, P14328, DOI 10.1103/PhysRevB.45.14328. DUCASTELLE F, 1976, J PHYS F MET PHYS, V6, P2039, DOI 10.1088/0305-4608/6/11/005. ELBATANOUNY M, 1981, PHYS REV LETT, V46, P269, DOI 10.1103/PhysRevLett.46.269. GARCIAMOLINER F, 1986, PROG SURF SCI, V21, P93, DOI 10.1016/0079-6816(86)90011-0. GAY JG, 1981, PHYS REV B, V23, P1559, DOI 10.1103/PhysRevB.23.1559. KUDRNOVSKY J, 1991, PHYS REV B, V44, P4068, DOI 10.1103/PhysRevB.44.4068. KUDRNOVSKY J, 1991, PHYS REV B, V44, P6410, DOI 10.1103/PhysRevB.44.6410. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. KUDRONOVSKY J, 1987, PHYS REV B, V35, P2847. ONEILL DG, 1985, J VAC SCI TECHNOL A, V3, P1639, DOI 10.1116/1.573023. PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048. PERVAN P, 1992, SURF SCI, V264, P135, DOI 10.1016/0039-6028(92)90172-3. Pessa M., 1984, Annals of the Israel Physical Society, V6. PETERSSON LG, 1984, PHYS REV B, V30, P3055, DOI 10.1103/PhysRevB.30.3055. ROGOZIK J, 1984, SURF SCI, V148, pL653, DOI 10.1016/0039-6028(84)90571-5. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. SMITH NV, 1989, PHYS REV B, V40, P7565, DOI 10.1103/PhysRevB.40.7565. TREGLIA G, 1988, EUROPHYS LETT, V7, P575, DOI 10.1209/0295-5075/7/7/001. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009.}",
	number-of-cited-references = "{25}",
	times-cited = "{10}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{LP050}",
	unique-id = "{ISI:A1993LP05000061}"
}

J KUDRNOVSKY, I TUREK, V DRCHAL, P WEINBERGER, SK BOSE and A PASTUREL. SELF-CONSISTENT GREEN-FUNCTION METHOD FOR SURFACES OF RANDOM ALLOYS. PHYSICAL REVIEW B 47(24):16525-16531, 1993. BibTeX

@article{ ISI:A1993LJ15600060,
	author = "KUDRNOVSKY, J and TUREK, I and DRCHAL, V and WEINBERGER, P and BOSE, SK and PASTUREL, A",
	title = "{SELF-CONSISTENT GREEN-FUNCTION METHOD FOR SURFACES OF RANDOM ALLOYS}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1993}",
	volume = "{47}",
	number = "{24}",
	pages = "{16525-16531}",
	month = "{JUN 15}",
	abstract = "{An efficient self-consistent Green's-function technique using a generalization of the coherent-potential approximation method is presented in order to describe the electronic structure of inhomogeneous semi-infinite alloys with varying concentration profiles at the surface within the local-density approximation. The formalism is applied to the study of the electronic properties of the (001) surface of Cu1-xNix fcc random alloys.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{KUDRNOVSKY, J (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS,CS-18040 PRAGUE 8,CZECHOSLOVAKIA. TECH UNIV VIENNA,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA. CZECHOSLOVAK ACAD SCI,INST PHYS MET,CS-61662 BRNO,CZECHOSLOVAKIA. CZECHOSLOVAK ACAD SCI,INST PHYS,CS-18040 PRAGUE 8,CZECHOSLOVAKIA. TECH UNIV VIENNA,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA. BROCK UNIV,DEPT PHYS,ST CATHARINES L2S 3A1,ONTARIO,CANADA. ECOLE NATL SUPER,THERMODYNAM \& PHYSICOCHIM MET LAB,F-38402 ST MARTIN DHERES,FRANCE.}",
	doi = "{10.1103/PhysRevB.47.16525}",
	issn = "{0163-1829}",
	keywords-plus = "{CU-NI ALLOYS; COHERENT-POTENTIAL-APPROXIMATION; TRANSITION-METAL ALLOYS; ELECTRONIC-STRUCTURE; SEGREGATION; STATES}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{BEIDEN SV, 1991, J PHYS-CONDENS MAT, V3, P8597, DOI 10.1088/0953-8984/3/44/006. BREJNAK M, 1990, J PHYS-CONDENS MAT, V2, P869, DOI 10.1088/0953-8984/2/4/008. CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566. CUNNINGHAM SL, 1974, PHYS REV B, V10, P4988, DOI 10.1103/PhysRevB.10.4988. DRCHAL V, 1992, PHYS REV B, V45, P14328, DOI 10.1103/PhysRevB.45.14328. ERSCHBAUMER H, 1991, SURF SCI, V243, P317, DOI 10.1016/0039-6028(91)90369-4. EYMERY J, 1990, SURF SCI, V231, P419, DOI 10.1016/0039-6028(90)90211-P. INGLESFIELD JE, 1988, PHYS REV B, V37, P6682, DOI 10.1103/PhysRevB.37.6682. KUDRNOVSKY J, 1992, PHYS REV LETT, V69, P308, DOI 10.1103/PhysRevLett.69.308. KUDRNOVSKY J, 1991, PHYS REV B, V44, P6410, DOI 10.1103/PhysRevB.44.6410. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. KUDRNOVSKY J, 1992, PHYS REV B, V46, P4222, DOI 10.1103/PhysRevB.46.4222. KUMAR D, 1976, J PHYS F MET PHYS, V6, P725, DOI 10.1088/0305-4608/6/5/015. MACLAREN JM, 1989, PHYS REV B, V40, P12164, DOI 10.1103/PhysRevB.40.12164. METHFESSEL M, 1992, PHYS REV B, V46, P4816, DOI 10.1103/PhysRevB.46.4816. MUKHERJEE S, 1982, PHYS REV B, V25, P730, DOI 10.1103/PhysRevB.25.730. PASTUREL A, IN PRESS PHYS REV B. PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048. SEIB DH, 1970, PHYS REV B-SOLID ST, V2, P1676, DOI 10.1103/PhysRevB.2.1676. SKRIVER HL, 1992, PHYS REV B, V46, P7157, DOI 10.1103/PhysRevB.46.7157. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. SMITH NV, 1989, PHYS REV B, V40, P7565, DOI 10.1103/PhysRevB.40.7565. STOCKS GM, 1971, PHYS REV B, V4, P4390, DOI 10.1103/PhysRevB.4.4390. STOCKS GM, 1978, PHYS REV LETT, V41, P339, DOI 10.1103/PhysRevLett.41.339. TREGLIA G, 1988, EUROPHYS LETT, V7, P575, DOI 10.1209/0295-5075/7/7/001. WANG HY, 1992, PHYS REV B, V45, P12028, DOI 10.1103/PhysRevB.45.12028. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009. WILLIAMS FL, 1974, SURF SCI, V45, P377, DOI 10.1016/0039-6028(74)90177-0.}",
	number-of-cited-references = "{28}",
	times-cited = "{30}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{LJ156}",
	unique-id = "{ISI:A1993LJ15600060}"
}

C HAUSLEITNER and I TUREK. STRUCTURAL, ELECTRONIC, AND MAGNETIC-PROPERTIES OF METALLIC GLASSES. JOURNAL OF NON-CRYSTALLINE SOLIDS 156(1):210-218, Květen 1993. 8TH INTERNATIONAL CONF ON LIQUID AND AMORPHOUS METALS, VIENNA, AUSTRIA, AUG 31-SEP 04, 1992. BibTeX

@article{ ISI:A1993LC96400047,
	author = "HAUSLEITNER, C and TUREK, I",
	title = "{STRUCTURAL, ELECTRONIC, AND MAGNETIC-PROPERTIES OF METALLIC GLASSES}",
	journal = "{JOURNAL OF NON-CRYSTALLINE SOLIDS}",
	year = "{1993}",
	volume = "{156}",
	number = "{1}",
	pages = "{210-218}",
	month = "{MAY}",
	note = "{8TH INTERNATIONAL CONF ON LIQUID AND AMORPHOUS METALS, VIENNA, AUSTRIA, AUG 31-SEP 04, 1992}",
	organization = "{INT UNION PURE \& APPL PHYS; EUROPEAN PHYS SOC; AUSTRIAN ACAD SCI; AUSTRIAN MINIST SCI \& RES; FONDS CHEM IND; CREDITANSTALT BANKVEREIN; WIENER FREMDENVEKEHRSVERBAND}",
	abstract = "{This paper reviews recent progress in the theory of the atomic, electronic, and magnetic structure of glassy alloys containing transition metals (TM). Realistic structural models are obtained using molecular-dynamic simulations based on pair interatomic forces derived from a hybridized nearly-free-electron - tight-binding-bond method. This approach describes quantitatively compositional trends in chemical and topological short-range order in agreement with diffraction experiments. The electronic and magnetic structure is studied by means of a spin-polarized linear-muffin-tin-orbital supercell method. The resulting different magnetic orders (inhomogeneous ferro- and ferri-magnets, spin-glasses) are related to the calculated local densities of states. A proportionality has been found between local magnetic moments and local exchange splittings of 3d-TM atoms. In iron-rich TM glasses, the existence of negative iron moments has been explained on the basis of a local-environment effect.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{VIENNA TECH UNIV,INST THEORET PHYS,WIEDNER HAUPTSTR 8-10,A-1040 VIENNA,AUSTRIA. UNIV OXFORD,DEPT MAT,PARKS RD,OXFORD OX1,ENGLAND.}",
	doi = "{10.1016/0022-3093(93)90165-T}",
	issn = "{0022-3093}",
	keywords-plus = "{MOLECULAR-DYNAMICS; IRON; FE; ALLOYS; SUPERCONDUCTIVITY; FERROMAGNETISM; LIQUID}",
	research-areas = "{Materials Science}",
	web-of-science-categories = "{Materials Science, Ceramics; Materials Science, Multidisciplinary}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{ALTOUNIAN Z, 1983, PHYS REV B, V27, P4149, DOI 10.1103/PhysRevB.27.4149. ARNOLD A, 1990, COMPUT PHYS COMMUN, V59, P267, DOI 10.1016/0010-4655(90)90175-Z. ARNOLD A, 1989, J PHYS-CONDENS MAT, V1, P965, DOI 10.1088/0953-8984/1/5/013. BOSE SK, 1988, PHYS REV B, V37, P9955, DOI 10.1103/PhysRevB.37.9955. CHING WY, 1984, PHYS REV B, V30, P544, DOI 10.1103/PhysRevB.30.544. CUSACK NE, 1987, PHYSICS STRUCTURALLY. DAW MS, 1984, PHYS REV B, V29, P6443, DOI 10.1103/PhysRevB.29.6443. FUJIWARA T, 1984, J NON-CRYST SOLIDS, V61-2, P1039, DOI 10.1016/0022-3093(84)90679-3. FUKUNAGA T, 1984, J NON-CRYST SOLIDS, V61-2, P343, DOI 10.1016/0022-3093(84)90572-6. Gaskell P., 1983, GLASSY METALS, VII, P5. HAFNER J, 1987, HAMILTONIANS PHASE D, P145. HAUSLEITNER C, 1992, J NON-CRYST SOLIDS, V144, P175, DOI 10.1016/S0022-3093(05)80398-9. HAUSLEITNER C, 1992, PHYS REV B, V45, P128, DOI 10.1103/PhysRevB.45.128. HAUSLEITNER C, 1992, PHYS REV B, V45, P115, DOI 10.1103/PhysRevB.45.115. HAUSLEITNER C, 1992, IN PRESS PHYS REV B. HAUSLEITNER C, 1992, IN PRESS CONDENS MAT. Heine V., 1970, SOLID STATE PHYS, V24, P247. HIMPSEL FJ, 1991, J MAGN MAGN MATER, V102, P261, DOI 10.1016/0304-8853(91)90137-Y. HIROYOSHI H, 1983, J MAGN MAGN MATER, V31-4, P1493, DOI 10.1016/0304-8853(83)90987-3. JANK W, 1991, EUROPHYS LETT, V16, P473, DOI 10.1209/0295-5075/16/5/011. KAKEHASHI Y, 1991, PHYS REV B, V43, P10820, DOI 10.1103/PhysRevB.43.10820. KRAUSS U, 1991, J MAGN MAGN MATER, V98, pL1, DOI 10.1016/0304-8853(91)90416-8. KROMPIEWSKI S, 1989, PHYS REV B, V39, P2819, DOI 10.1103/PhysRevB.39.2819. KUBLER J, 1989, SOLID STATE COMMUN, V72, P631, DOI 10.1016/0038-1098(89)90662-5. MA H, 1991, J PHYS-CONDENS MAT, V3, P5563, DOI 10.1088/0953-8984/3/29/010. MACKINTOSH AR, 1980, ELECTRONS FERMI SURF. MALOZEMOFF AP, 1983, J MAGN MAGN MATER, V35, P192, DOI 10.1016/0304-8853(83)90492-4. MOORJANI K, 1984, MAGNETIC GLASSES, P273. MORUZZI VL, 1989, PHYS REV B, V39, P6957, DOI 10.1103/PhysRevB.39.6957. NOLD E, 1981, Z NATURFORSCH A, V36, P1032. OELHAFEN P, 1983, GLASSY METALS, V2, P283. OELHAFEN P, 1987, LIQUID AMORPHOUS MAT, P333. PETTIFOR DG, 1986, J PHYS C SOLID STATE, V19, P315, DOI 10.1088/0022-3719/19/3/003. PETTIFOR DG, 1991, MANY ATOM INTERACTIO, P48. RYAN DH, 1987, PHYS REV B, V35, P8630, DOI 10.1103/PhysRevB.35.8630. SADOC JF, 1983, GLASSY METALS, V2, P53. Skriver H., 1984, LMTO METHOD. STEEB S, 1984, J NON-CRYST SOLIDS, V61-2, P237, DOI 10.1016/0022-3093(84)90557-X. SUTTON AP, 1988, J PHYS C SOLID STATE, V21, P35, DOI 10.1088/0022-3719/21/1/007. SUZUKI K, 1990, J NON-CRYST SOLIDS, V117, P1, DOI 10.1016/0022-3093(90)90869-N. TRUDEAU ML, 1990, PHYS REV B, V41, P10535, DOI 10.1103/PhysRevB.41.10535. TUREK I, 1992, PHYS REV B, V46, P247, DOI 10.1103/PhysRevB.46.247. TUREK I, 1992, J MAGN MAGN MATER, V109, pL145, DOI 10.1016/0304-8853(92)91740-K. TUREK I, 1992, J PHYS-CONDENS MAT, V4, P7257, DOI 10.1088/0953-8984/4/35/010. TURNBULL D, 1961, J CHEM PHYS, V34, P120, DOI 10.1063/1.1731549. von Minnigerode G., 1987, Amorphous and Liquid Materials. Proceedings of the NATO Advanced Study Institute. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. WANG CS, 1985, PHYS REV LETT, V54, P1852, DOI 10.1103/PhysRevLett.54.1852. WILLS JH, 1983, PHYS REV B, V28, P4364.}",
	number-of-cited-references = "{49}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{J. Non-Cryst. Solids}",
	doc-delivery-number = "{LC964}",
	unique-id = "{ISI:A1993LC96400047}"
}

A COSSYFAVRE, HG BOYEN, P OELHAFEN, I TUREK and J HAFNER. ELECTRONIC-STRUCTURE OF AMORPHOUS FE-ZR ALLOYS. JOURNAL OF NON-CRYSTALLINE SOLIDS 156(1):246-250, Květen 1993. 8TH INTERNATIONAL CONF ON LIQUID AND AMORPHOUS METALS, VIENNA, AUSTRIA, AUG 31-SEP 04, 1992. BibTeX

@article{ ISI:A1993LC96400053,
	author = "COSSYFAVRE, A and BOYEN, HG and OELHAFEN, P and TUREK, I and HAFNER, J",
	title = "{ELECTRONIC-STRUCTURE OF AMORPHOUS FE-ZR ALLOYS}",
	journal = "{JOURNAL OF NON-CRYSTALLINE SOLIDS}",
	year = "{1993}",
	volume = "{156}",
	number = "{1}",
	pages = "{246-250}",
	month = "{MAY}",
	note = "{8TH INTERNATIONAL CONF ON LIQUID AND AMORPHOUS METALS, VIENNA, AUSTRIA, AUG 31-SEP 04, 1992}",
	organization = "{INT UNION PURE \& APPL PHYS; EUROPEAN PHYS SOC; AUSTRIAN ACAD SCI; AUSTRIAN MINIST SCI \& RES; FONDS CHEM IND; CREDITANSTALT BANKVEREIN; WIENER FREMDENVEKEHRSVERBAND}",
	abstract = "{Ultraviolet and X-ray photoelectron spectroscopy measurements on amorphous FexZr100-x films prepared in situ by electron beam co-evaporation are reported. The use of the vapour quenching technique offers the advantage of obtaining amorphous samples over an extended concentration range (22 less-than-or-equal-to x less-than-or-equal-to 82) and, most importantly, avoids the extensive sputter cleaning procedure standardly applied for ex situ prepared samples. For the first time, valence band spectra of amorphous transition metal alloys can be compared directly with theoretical photoelectron distribution curves calculated on the basis of a disordered atomic structure. Predicted variations of the valence band shape are found to be in qualitatively good agreement with the experimental data, further supporting the theoretical description of these amorphous transition metal alloys. Lineshape analysis of the Fe 2P3/2 core levels reveals an increasing asymmetry with increasing Fe content, a behaviour which can qualitatively be understood in terms of a growing exchange-splitting of the spin-up and spin-down subbands.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{COSSYFAVRE, A (Reprint Author), INST PHYS,KLINGELBERGSTR 82,CH-4056 BASEL,SWITZERLAND. VIENNA TECH UNIV,INST THEORET PHYS,A-1040 VIENNA,AUSTRIA.}",
	doi = "{10.1016/0022-3093(93)90171-S}",
	issn = "{0022-3093}",
	keywords-plus = "{X-RAY PHOTOEMISSION; SPECTRA; METALS}",
	research-areas = "{Materials Science}",
	web-of-science-categories = "{Materials Science, Ceramics; Materials Science, Multidisciplinary}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Boyen, Hans-Gerd/N-2214-2014}",
	cited-references = "{BOYEN HG, 1993, J NON-CRYST SOLIDS, V156, P263, DOI 10.1016/0022-3093(93)90175-W. COSSYFAVRE A, IN PRESS HELV PHYS A. DEUTZ J, 1981, J PHYS F MET PHYS, V11, P1787, DOI 10.1088/0305-4608/11/9/008. DONIACH S, 1970, J PHYS PART C SOLID, V3, P285, DOI 10.1088/0022-3719/3/2/010. Fuggle J.C., 1982, PHYS REV B, V27, P2145. HAUSLEITNER C, 1992, PHYS REV B, V45, P128, DOI 10.1103/PhysRevB.45.128. HAUSLEITNER C, 1992, PHYS REV B, V45, P115, DOI 10.1103/PhysRevB.45.115. Hopfield J. J., 1969, Comments on Solid State Physics, V2, P40. HUFNER S, 1979, PHOTOEMISSION SOLI 2, V27, P201. JANK W, 1990, J PHYS-CONDENS MAT, V2, P5065, DOI 10.1088/0953-8984/2/22/025. KROMPIEWSKI S, 1989, PHYS REV B, V39, P2819, DOI 10.1103/PhysRevB.39.2819. MORUZZI VL, 1983, PHYS REV B, V27, P2049, DOI 10.1103/PhysRevB.27.2049. NEDDERMEYER H, 1987, PHYS REV B, V36, P4148, DOI 10.1103/PhysRevB.36.4148. NIEBUHR J, 1991, PHYSICAL DATA AMORPH. OELHAFEN P, 1980, SOLID STATE COMMUN, V35, P1017, DOI 10.1016/0038-1098(80)91009-1. REDINGER J, 1986, Z PHYS B CON MAT, V63, P321, DOI 10.1007/BF01303812. TUREK I, 1992, J PHYS-CONDENS MAT, V4, P7257, DOI 10.1088/0953-8984/4/35/010. TUREK I, 1992, PHYS REV B, V46, P47. UMRUH KM, 1984, PHYS REV B, V30, P4968. WALKER CGH, 1992, SOLID STATE COMMUN, V82, P573, DOI 10.1016/0038-1098(92)90235-2. WERTHEIM GK, 1978, PHOTOEMISSION SOLI 1, V26, P201.}",
	number-of-cited-references = "{21}",
	times-cited = "{7}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{J. Non-Cryst. Solids}",
	doc-delivery-number = "{LC964}",
	unique-id = "{ISI:A1993LC96400053}"
}

V DRCHAL, J KUDRNOVSKY, I TUREK and M SOB. SELF-CONSISTENT GREEN-FUNCTION METHOD FOR DISORDERED SURFACES. INTERNATIONAL JOURNAL OF MODERN PHYSICS B 7(1-3, 1):534-537, Leden 1993. INTERNATIONAL CONF ON THE PHYSICS OF TRANSITION METALS ( ICPTM ), TECH UNIV DARMSTADT, DARMSTADT, GERMANY, JUL 20-24, 1992. BibTeX

@article{ ISI:A1993LE72300112,
	author = "DRCHAL, V and KUDRNOVSKY, J and TUREK, I and SOB, M",
	title = "{SELF-CONSISTENT GREEN-FUNCTION METHOD FOR DISORDERED SURFACES}",
	journal = "{INTERNATIONAL JOURNAL OF MODERN PHYSICS B}",
	year = "{1993}",
	volume = "{7}",
	number = "{1-3, 1}",
	pages = "{534-537}",
	month = "{JAN}",
	note = "{INTERNATIONAL CONF ON THE PHYSICS OF TRANSITION METALS ( ICPTM ), TECH UNIV DARMSTADT, DARMSTADT, GERMANY, JUL 20-24, 1992}",
	organization = "{DEUT FORSCHUNGSGEMEINSCH}",
	abstract = "{The electronic structure of disordered metal surfaces is calculated using a self-consistent Green's function technique based on the LDA and on the TB-LMTO-CPA method. The potentials are treated within the ASA, but for their construction both the monopole and dipole components of the charge density are used. This is necessary for accurate evaluation of the work functions. The method can describe various situations ranging from the ordered and disordered overlayer on the metal substrate to the surface of disordered alloy with compositional inhomogeneity close to surface. The parameters of effective Ising model for disordered surfaces axe calculated. They can be used in studies of segregation phenomena or surface phase diagrams. The theory is illustrated on the random AgPd overlayer on fcc(001) Ag, and on the fcc(001) face of random PdRh alloy.}",
	publisher = "{WORLD SCIENTIFIC PUBL CO PTE LTD}",
	address = "{JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{CZECHOSLOVAK ACAD SCI,INST PHYS MET,CS-61662 BRNO,CZECHOSLOVAKIA. CZECHOSLOVAK ACAD SCI,INST PHYS,CS-18040 PRAGUE 8,CZECHOSLOVAKIA.}",
	issn = "{0217-9792}",
	keywords-plus = "{TRANSITION-METAL ALLOYS; BINDING ISING-MODEL; SEGREGATION}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Applied; Physics, Condensed Matter; Physics, Mathematical}",
	researcherid-numbers = "{Sob, Mojmir/D-1936-2012 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014 Sob, Mojmir/G-6865-2011}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417 }",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. CONNOLLY JWD, 1983, PHYS REV B, V27, P5169, DOI 10.1103/PhysRevB.27.5169. DRCHAL V, IN PRESS PHYS REV B, V45. DREYSSE H, 1991, SOLID STATE COMMUN, V78, P355, DOI 10.1016/0038-1098(91)90683-M. DUCASTELLE F, 1976, J PHYS F MET PHYS, V6, P2039, DOI 10.1088/0305-4608/6/11/005. Ducastelle F., 1991, ORDER PHASE STABILIT. KUDRNOVSKY J, 1991, PHYS REV B, V44, P6410, DOI 10.1103/PhysRevB.44.6410. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. LEGRAND B, 1990, PHYS REV B, V41, P4422, DOI 10.1103/PhysRevB.41.4422. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. SMITH NV, 1989, PHYS REV B, V40, P7565, DOI 10.1103/PhysRevB.40.7565. STOCKS GM, 1989, NATO SERIES E, V163. TREGLIA G, 1988, EUROPHYS LETT, V7, P575, DOI 10.1209/0295-5075/7/7/001.}",
	number-of-cited-references = "{13}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{1}",
	journal-iso = "{Int. J. Mod. Phys. B}",
	doc-delivery-number = "{LE723}",
	unique-id = "{ISI:A1993LE72300112}"
}

J HAFNER, C HAUSLEITNER, W JANK and I TUREK. 1ST-PRINCIPLES CALCULATIONS OF THE STRUCTURAL, ELECTRONIC, AND MAGNETIC-PROPERTIES OF TRANSITION-METAL GLASSES. JOURNAL OF NON-CRYSTALLINE SOLIDS 150(1-3):307-313, Listopad 1992. 5TH INTERNATIONAL CONF ON THE STRUCTURE OF NON-CRYSTALLINE MATERIALS ( NCM 5 ), SENDAI, JAPAN, SEP 02-06, 1991. BibTeX

@article{ ISI:A1992KD15700060,
	author = "HAFNER, J and HAUSLEITNER, C and JANK, W and TUREK, I",
	title = "{1ST-PRINCIPLES CALCULATIONS OF THE STRUCTURAL, ELECTRONIC, AND MAGNETIC-PROPERTIES OF TRANSITION-METAL GLASSES}",
	journal = "{JOURNAL OF NON-CRYSTALLINE SOLIDS}",
	year = "{1992}",
	volume = "{150}",
	number = "{1-3}",
	pages = "{307-313}",
	month = "{NOV}",
	note = "{5TH INTERNATIONAL CONF ON THE STRUCTURE OF NON-CRYSTALLINE MATERIALS ( NCM 5 ), SENDAI, JAPAN, SEP 02-06, 1991}",
	organization = "{TOHOHU UNIV, INST MAT RES; JAPANESE MINIST EDUC SCI \& CULTURE; JAPANESE SOC PROMOT SCI; MIYAGI PREFECTURE; SENDAI CITY; NISHINA MEM FDN; MURATA SCI FDN; NIPPON SHEET GLASS FDN MAT SCI; ASASHI GLASS FDN}",
	abstract = "{Ab-initio calculations of the atomic structure, the electronic density of states, the photoemission spectrum, and the magnetic properties of transition-metal glasses are presented. This approach is based on a tight-binding-bond approach to the interatomic forces, molecular dynamics simulations of the atomic structure and self-consistent spin-polarized linear-muffin-tin-orbital supercell calculations for the electronic and magnetic properties.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{HAFNER, J (Reprint Author), TECH UNIV WIEN,INST THEORET PHYS,WIEDNER HAUPTSTR 8-10,A-1040 VIENNA,AUSTRIA.}",
	doi = "{10.1016/0022-3093(92)90142-7}",
	issn = "{0022-3093}",
	keywords-plus = "{AMORPHOUS-ALLOYS; MOLECULAR-DYNAMICS; LIQUID; ORDER}",
	research-areas = "{Materials Science}",
	web-of-science-categories = "{Materials Science, Ceramics; Materials Science, Multidisciplinary}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{AMAMOU A, 1980, SOLID STATE COMMUN, V33, P1019. ARNOLD A, 1990, COMPUT PHYS COMMUN, V59, P267, DOI 10.1016/0010-4655(90)90175-Z. ARNOLD A, 1989, J PHYS-CONDENS MAT, V1, P965, DOI 10.1088/0953-8984/1/5/013. COEY JMD, 1984, J APPL PHYS, V55, P1800, DOI 10.1063/1.333483. Hafner J., 1987, HAMILTONIANS PHASE D. HAUSLEITNER C, 1990, PHYS REV B, V42, P5863, DOI 10.1103/PhysRevB.42.5863. HAUSLEITNER C, 1990, J PHYS-CONDENS MAT, V2, P6651, DOI 10.1088/0953-8984/2/31/018. HAUSLEITNER C, 1992, PHYS REV B, V45, P128, DOI 10.1103/PhysRevB.45.128. HAUSLEITNER C, 1992, PHYS REV B, V45, P115, DOI 10.1103/PhysRevB.45.115. JARLBORG T, 1979, J PHYS C SOLID STATE, V12, P265, DOI 10.1088/0022-3719/12/2/014. JASWAL SS, 1988, PHYS REV B, V38, P7311, DOI 10.1103/PhysRevB.38.7311. JASWAL SS, 1988, PHYS REV B, V37, P9955. KREY U, 1990, J MAGN MAGN MATER, V86, P85, DOI 10.1016/0304-8853(90)90088-8. Maret M., 1985, Rapidly Quenched Metals. Proceedings of the Fifth International Conference. MOHN P, 1986, PHYSICA B, V130, P26. MOORJANI K, 1984, MAGNETIC GLASSES, P273. OELHAFEN P, 1987, LIQUID AMORPHOUS MAT, P333. PETTIFOR DG, 1991, PHILOS T ROY SOC A, V334, P439, DOI 10.1098/rsta.1991.0024. REDINGER J, 1986, Z PHYS B CON MAT, V63, P321, DOI 10.1007/BF01303812. RYAN DH, 1987, PHYS REV B, V35, P8630, DOI 10.1103/PhysRevB.35.8630. SAITO N, 1986, J PHYS F MET PHYS, V16, P911, DOI 10.1088/0305-4608/16/7/018. Skriver H., 1984, LMTO METHOD. STOBIECKI T, CITED INDIRECTLY. SUTTON AP, 1988, J PHYS C SOLID STATE, V21, P35, DOI 10.1088/0022-3719/21/1/007. SUZUKI K, 1990, J NON-CRYST SOLIDS, V117, P1, DOI 10.1016/0022-3093(90)90869-N. VONBARTH U, 1985, PHYS REV B, V12, P1257.}",
	number-of-cited-references = "{26}",
	times-cited = "{4}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{J. Non-Cryst. Solids}",
	doc-delivery-number = "{KD157}",
	unique-id = "{ISI:A1992KD15700060}"
}

I TUREK, C BECKER and J HAFNER. LOCAL SPIN-DENSITY THEORY OF ITINERANT MAGNETISM IN CRYSTALLINE AND AMORPHOUS TRANSITION-METAL ALLOYS. JOURNAL OF PHYSICS-CONDENSED MATTER 4(35):7257-7284, 1992. BibTeX

@article{ ISI:A1992JM00700010,
	author = "TUREK, I and BECKER, C and HAFNER, J",
	title = "{LOCAL SPIN-DENSITY THEORY OF ITINERANT MAGNETISM IN CRYSTALLINE AND AMORPHOUS TRANSITION-METAL ALLOYS}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{1992}",
	volume = "{4}",
	number = "{35}",
	pages = "{7257-7284}",
	month = "{AUG 31}",
	abstract = "{We present self-consistent spin-polarized electronic structure calculations for realistic models of amorphous transition metal alloys. The atomic structure is prepared by a simulated molecular-dynamic quench, based on interatomic forces calculated using hybridized nearly-free-electron tight-binding-bond theory. The electronic structure is calculated in the local spin-density approximation, using a linear muffin-tin orbital (LMTO) supercell approach. Detailed results for crystalline and amorphous alloys of Ni, Co and Fe with Zr are presented. NixZr1-x alloys are predicted to be paramagnetic for x less-than-or-equal-to 0.85, both in the crystalline and in the amorphous state. In CoxZr1-x the onset of magnetic ordering occurs at x congruent-to 0.67 for crystalline and at x congruent-to 0.50 for amorphous alloys. The Co-rich alloys are predicted to be strong ferrimagnets. The formation of the negative Zr moments is related to a covalent coupling of Co- and Zr-d states, which is strongest for the Co minority-spin states. The enhancement of magnetism in the glassy alloys is related to an increase of the density of states at the Fermi level induced by structural disorder. In both crystalline and amorphous FexZr1-x alloys, the onset of ferrimagnetic ordering occurs at x congruent-to 0.33. In contrast to the Co-based alloys, FexZr1-x alloys are weak magnets. For x greater-than-or-equal-to 0.75 the competition between ferromagnetic and antiferromagnetic exchange interactions leads to the formation of negative moments on isolated Fe sites. The number of negative Fe moments increases strongly for x greater-than-or-equal-to 0.90, leading to a decrease of the average moment in the Fe-rich limit. We show that the formation of negative local Fe moments is related to a large number of contracted Fe-Fe pairs. The predictions of local spin-density theory are found to be in excellent agreement with experiment. For all crystalline and amorphous alloys the local exchange splitting of the 3d states is shown to be correlated linearly with the local magnetic moment, with a slope of congruent-to 1 eV-mu(B)-1. This relation holds for all types of magnetic order and also for the crystalline and amorphous pure metals.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{VIENNA TECH UNIV, INST THEORET PHYS, HAUPTSTR 8-10, A-1040 VIENNA, AUSTRIA.}",
	doi = "{10.1088/0953-8984/4/35/010}",
	issn = "{0953-8984}",
	eissn = "{1361-648X}",
	keywords-plus = "{ELECTRONIC-STRUCTURE; NEUTRON-SCATTERING; BOND ORDER; FCC IRON; FE; GLASSES; LIQUID; FERROMAGNETISM; MAGNETIZATION; ZR(FE1-XCOX)2}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{ALTOUNIAN Z, 1983, PHYS REV B, V27, P4149, DOI 10.1103/PhysRevB.27.4149. AMAMOU A, 1982, J PHYS F MET PHYS, V12, P2509, DOI 10.1088/0305-4608/12/11/011. AMAMOU A, 1980, SOLID STATE COMMUN, V37, P7. Andersen O. K., 1986, ELECT BAND STRUCTURE, DOI 10.1007/3540180982\_1. ANDRESEN OK, 1985, HIGHLIGHTS CONDENSED, P59. AOKI Y, 1972, PHYS STATUS SOLIDI B, V53, pK137, DOI 10.1002/pssb.2220530253. ARMITAGE JGM, 1986, J PHYS F MET PHYS, V16, pL141, DOI 10.1088/0305-4608/16/7/005. BIEBER A, 1986, J MAGN MAGN MATER, V54-7, P967, DOI 10.1016/0304-8853(86)90337-9. BLAHA P, 1988, PHYS REV B, V38, P9368, DOI 10.1103/PhysRevB.38.9368. BLUGEL S, 1987, PHYS REV B, V35, P3271, DOI 10.1103/PhysRevB.35.3271. BOSE SK, 1988, PHYS REV B, V37, P9955, DOI 10.1103/PhysRevB.37.9955. COEHOORN R, 1989, PHYS REV B, V39, P13072, DOI 10.1103/PhysRevB.39.13072. FELSCH W, 1969, Z PHYS, V219, P280, DOI 10.1007/BF01397570. FRIEDEL J, 1963, METALLIC SOLID SOLUT, P287. FUJII H, 1981, J MAGN MAGN MATER, V24, P93, DOI 10.1016/0304-8853(81)90105-0. FUJIWARA T, 1984, J NON-CRYST SOLIDS, V61-2, P1039, DOI 10.1016/0022-3093(84)90679-3. Gaskell P., 1983, GLASSY METALS, VII, P5. GRIGSON CWB, 1984, NATURE, V204, P173. HAFNER J, 1988, PHYS REV B, V38, P7320, DOI 10.1103/PhysRevB.38.7320. HAFNER J, 1990, PHYS REV B, V42, P11530, DOI 10.1103/PhysRevB.42.11530. HAFNER J, PHYS REV B, V45, P2739. HAFNER J, 1987, HAMILTONIANS PHASE D, V70. HAUSLEITNER C, 1990, PHYS REV B, V42, P5863, DOI 10.1103/PhysRevB.42.5863. HAUSLEITNER C, 1992, PHYS REV B, V45, P128, DOI 10.1103/PhysRevB.45.128. HAUSLEITNER C, 1992, PHYS REV B, V45, P115, DOI 10.1103/PhysRevB.45.115. HAUSLEITNER C, 1992, UNPUB J PHYS CONDENS. HAUSLEITNER C, 1992, IN PRESS J NONCRYST. Heine V., 1970, SOLID STATE PHYS, V24, P247. HEINE V, 1980, SOLID STATE PHYSICS, V35. HIMPSEL FJ, 1991, PHYS REV LETT, V67, P2363, DOI 10.1103/PhysRevLett.67.2363. HOSOMA T, 1981, RAPIDLY QUENCHED MET, V4, P1225. JANAK JF, 1978, SOLID STATE COMMUN, V25, P53, DOI 10.1016/0038-1098(78)90354-X. JANK W, 1990, J PHYS-CONDENS MAT, V2, P5065, DOI 10.1088/0953-8984/2/22/025. JANK W, 1990, PHYS REV B, V41, P1497, DOI 10.1103/PhysRevB.41.1497. JANK W, 1991, EUROPHYS LETT, V16, P473, DOI 10.1209/0295-5075/16/5/011. JANK W, 1990, PHYS REV B, V42, P6296. JARLBORG T, 1979, J PHYS C SOLID STATE, V12, P265, DOI 10.1088/0022-3719/12/2/014. JARLBORG T, 1984, J MAGN MAGN MATER, V42, P89, DOI 10.1016/0304-8853(84)90293-2. JASWAL SS, 1988, PHYS REV B, V38, P3711. KAKEHASHI Y, 1990, PHYS REV B, V41, P9207, DOI 10.1103/PhysRevB.41.9207. KAKEHASHI Y, 1991, PHYS REV B, V43, P10820, DOI 10.1103/PhysRevB.43.10820. KANEMATSU K, 1971, J PHYS SOC JPN, V31, P1355, DOI 10.1143/JPSJ.31.1355. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. KRAUSS U, 1991, J MAGN MAGN MATER, V98, pL1, DOI 10.1016/0304-8853(91)90416-8. KREY U, 1992, J MAGN MAGN MATER, V103, P37, DOI 10.1016/0304-8853(92)90232-D. KROMPIEWSKI S, 1989, PHYS REV B, V39, P2819, DOI 10.1103/PhysRevB.39.2819. KUBLER J, 1988, J APPL PHYS, V63, P3482. KUBLER J, 1989, SOLID STATE COMMUN, V72, P631, DOI 10.1016/0038-1098(89)90662-5. KWAN ML, 1974, JPN J APPL PHYS S, V2, P3065. MA H, 1991, J PHYS-CONDENS MAT, V3, P5563, DOI 10.1088/0953-8984/3/29/010. MALOZEMOFF AP, 1983, J MAGN MAGN MATER, V35, P192, DOI 10.1016/0304-8853(83)90492-4. MATHUR P, 1983, Z PHYS B CON MAT, V53, P255, DOI 10.1007/BF01436287. MOHN P, 1985, PHYSICA B \& C, V130, P26, DOI 10.1016/0378-4363(85)90173-1. MORUZZI VL, 1989, PHYS REV B, V39, P6957, DOI 10.1103/PhysRevB.39.6957. MORUZZI VL, 1978, CALCULATED ELECTRONI. MRYASOV ON, 1991, J PHYS-CONDENS MAT, V3, P7683, DOI 10.1088/0953-8984/3/39/013. MURAOKA Y, 1979, J PHYS F MET PHYS, V9, P1889, DOI 10.1088/0305-4608/9/9/019. OELHAFEN P, 1987, LIQUID AMORPHOUS MAT, P333. OHNUMA S, 1980, IEEE T MAGN, V16, P1129, DOI 10.1109/TMAG.1980.1060749. OSHIMA R, 1981, RAPIDLY QUENCHED MET, V4, P1117. Papaconstantopoulos D. A., 1986, HDB BAND STRUCTURE E. PETTIFOR DG, 1989, PHYS REV LETT, V63, P2480, DOI 10.1103/PhysRevLett.63.2480. PETTIFOR DG, 1991, PHILOS T ROY SOC A, V334, P439, DOI 10.1098/rsta.1991.0024. REDINGER J, 1986, Z PHYS B CON MAT, V63, P321, DOI 10.1007/BF01303812. RHYNE JJ, 1985, J APPL PHYS, V57, P3407, DOI 10.1063/1.335110. RYAN DH, 1991, J APPL PHYS, V69, P5057, DOI 10.1063/1.348948. RYAN DH, 1987, PHYS REV B, V35, P8630, DOI 10.1103/PhysRevB.35.8630. SAITO N, 1986, J PHYS F MET PHYS, V16, P911, DOI 10.1088/0305-4608/16/7/018. SCHWARZ K, 1984, J PHYS F MET PHYS, V14, P2659, DOI 10.1088/0305-4608/14/11/021. SJORSTROM J, 1987, THESIS UPPSALA U. Skriver H., 1984, LMTO METHOD. STOBIECKI T, 1987, P S MAGNETIC PROPERT. SUZUKI K, 1990, J NON-CRYST SOLIDS, V117, P1, DOI 10.1016/0022-3093(90)90869-N. TEGZE M, 1989, J PHYS-CONDENS MAT, V1, P8293, DOI 10.1088/0953-8984/1/44/002. TUREK I, 1990, HYPERFINE INTERACT, V62, P343. TUREK I, 1992, PHYS REV B, V46, P247, DOI 10.1103/PhysRevB.46.247. Villars P., 1985, PEARSONS HDB CRYSTAL. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. VOSKO SH, 1980, CAN J PHYS, V58, P1200. WANG CS, 1985, PHYS REV LETT, V54, P1852, DOI 10.1103/PhysRevLett.54.1852. WHITE RM, 1983, QUANTUM THEORY MAGNE, P142. WHYMAN P, 1974, J PHYS F MET PHYS, V4, pL6, DOI 10.1088/0305-4608/4/1/002. WIESINGER G, 1981, J MAGN MAGN MATER, V22, P227, DOI 10.1016/0304-8853(81)90027-5. WILLIAMS AR, 1983, J MAGN MAGN MATER, V31-4, P88, DOI 10.1016/0304-8853(83)90166-X. XU YN, 1991, J APPL PHYS, V69, P5460, DOI 10.1063/1.348009.}",
	number-of-cited-references = "{85}",
	times-cited = "{83}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{7}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{JM007}",
	unique-id = "{ISI:A1992JM00700010}"
}

J KUDRNOVSKY, I TUREK, V DRCHAL, P WEINBERGER, NE CHRISTENSEN and SK BOSE. SELF-CONSISTENT GREENS-FUNCTION METHOD FOR RANDOM OVERLAYERS. PHYSICAL REVIEW B 46(7):4222-4228, 1992. BibTeX

@article{ ISI:A1992JJ84600061,
	author = "KUDRNOVSKY, J and TUREK, I and DRCHAL, V and WEINBERGER, P and CHRISTENSEN, NE and BOSE, SK",
	title = "{SELF-CONSISTENT GREENS-FUNCTION METHOD FOR RANDOM OVERLAYERS}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1992}",
	volume = "{46}",
	number = "{7}",
	pages = "{4222-4228}",
	month = "{AUG 15}",
	abstract = "{A tight-binding version of the linear-muffin-tin-orbital method is used to describe the electronic structure Of random overlayers on a perfect substrate in a self-consistent manner within the local-density approximation. The true semi-infinite nature of the system is incorporated via the surface-Green's-function approach. A generalization of the coherent-potential-approximation method to treat inhomogeneous alloys is used to study the effect of disorder. The formalism is applied to evaluate the layer-projected densities of states and work functions of random Ag-Pd overlayers on a fcc Ag(001) substrate.}",
	publisher = "{AMERICAN PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{KUDRNOVSKY, J (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS,CS-18040 PRAGUE 8,CZECHOSLOVAKIA. CZECHOSLOVAK ACAD SCI,INST PHYS MET,CS-61662 BRNO,CZECHOSLOVAKIA. VIENNA TECH UNIV,INST TECH ELECTROCHEM,A-1060 VIENNA,AUSTRIA. AARHUS UNIV,INST PHYS,DK-8000 AARHUS,DENMARK. BROCK UNIV,DEPT PHYS,ST CATHARINES L2S 3A1,ONTARIO,CANADA.}",
	doi = "{10.1103/PhysRevB.46.4222}",
	issn = "{0163-1829}",
	keywords-plus = "{SURFACE ELECTRONIC-STRUCTURE; AG(001) SURFACE; ALLOYS; INTERFACES; STATES}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{KUDRNOVSKY, Josef/G-5581-2014 Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{KUDRNOVSKY, Josef/0000-0002-9968-6748 Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{AERS GC, 1989, SURF SCI, V217, P367, DOI 10.1016/0039-6028(89)90554-2. ALAN G, 1991, PHYS REV B, V44, P13641. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Andersen O. K., 1986, ELECT BAND STRUCTURE, DOI 10.1007/3540180982\_1. CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566. CITRIN PH, 1983, PHYS REV B, V27, P3176, DOI 10.1103/PhysRevB.27.3176. CRAMPIN S, 1992, PHYS REV B, V45, P464, DOI 10.1103/PhysRevB.45.464. CUNNINGHAM SL, 1974, PHYS REV B, V10, P4988, DOI 10.1103/PhysRevB.10.4988. DRCHAL V, 1992, PHYS REV B, V45, P14328, DOI 10.1103/PhysRevB.45.14328. DUCASTELLE F, 1976, J PHYS F MET PHYS, V6, P2039, DOI 10.1088/0305-4608/6/11/005. ERSCHBAUMER H, 1991, SURF SCI, V243, P317, DOI 10.1016/0039-6028(91)90369-4. GARCIAMOLINER F, 1986, PROG SURF SCI, V21, P93, DOI 10.1016/0079-6816(86)90011-0. HAMANN DR, 1981, PHYS REV B, V24, P6151, DOI 10.1103/PhysRevB.24.6151. HASEGAWA H, 1992, J PHYS-CONDENS MAT, V4, P1047, DOI 10.1088/0953-8984/4/4/015. INGLESFIELD JE, 1988, PHYS REV B, V37, P6682, DOI 10.1103/PhysRevB.37.6682. KRUGER P, 1988, PHYS REV B, V38, P10578, DOI 10.1103/PhysRevB.38.10578. KUDRNOVSKY J, 1991, PHYS REV B, V44, P4068, DOI 10.1103/PhysRevB.44.4068. KUDRNOVSKY J, 1991, PHYS REV B, V44, P6410, DOI 10.1103/PhysRevB.44.6410. KUDRNOVSKY J, 1990, PHYS REV B, V41, P7515, DOI 10.1103/PhysRevB.41.7515. LAMBRECHT WRL, 1986, SURF SCI, V178, P256, DOI 10.1016/0039-6028(86)90300-6. MACLAREN JM, 1989, PHYS REV B, V40, P12164, DOI 10.1103/PhysRevB.40.12164. MONNIER R, COMMUNICATION. NYHOLM R, 1992, J PHYS-CONDENS MAT, V4, P277, DOI 10.1088/0953-8984/4/1/039. PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048. SCHEFFLER M, 1991, PHYSICA B, V172, P143, DOI 10.1016/0921-4526(91)90426-F. SKRIVER HL, 1991, PHYS REV B, V43, P9538, DOI 10.1103/PhysRevB.43.9538. SMITH JR, 1980, PHYS REV B, V22, P4757, DOI 10.1103/PhysRevB.22.4757. SMITH NV, 1989, PHYS REV B, V40, P7565, DOI 10.1103/PhysRevB.40.7565. SOB M, 1991, MATER RES SOC SYMP P, V209, P177. TREGLIA G, 1988, EUROPHYS LETT, V7, P575, DOI 10.1209/0295-5075/7/7/001. WENZIEN B, 1989, J PHYS-CONDENS MAT, V1, P9893, DOI 10.1088/0953-8984/1/49/009.}",
	number-of-cited-references = "{31}",
	times-cited = "{41}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{JJ846}",
	unique-id = "{ISI:A1992JJ84600061}"
}

I TUREK and J HAFNER. MAGNETISM OF AMORPHOUS IRON - FROM FERROMAGNETISM TO ANTIFERROMAGNETISM AND SPIN-GLASS BEHAVIOR. PHYSICAL REVIEW B 46(1):247-256, 1992. BibTeX

@article{ ISI:A1992JC55600031,
	author = "TUREK, I and HAFNER, J",
	title = "{MAGNETISM OF AMORPHOUS IRON - FROM FERROMAGNETISM TO ANTIFERROMAGNETISM AND SPIN-GLASS BEHAVIOR}",
	journal = "{PHYSICAL REVIEW B}",
	year = "{1992}",
	volume = "{46}",
	number = "{1}",
	pages = "{247-256}",
	month = "{JUL 1}",
	abstract = "{The magnetization of realistic structural models of amorphous iron is calculated self-consistently within the framework of local-spin-density theory. We show that the distribution of the magnetic moments is strongly coupled to fluctuations in the local self-consistent potential. At a density slightly lower than bcc Fe, amorphous iron is predicted to be a strong inhomogeneous ferromagnet. An increase in density leads to a broadening of the bands and a transition to weak magnetism. The transition from strong to weak magnetism is coupled with the appearance of a few negative moments. Further compression induces more spin flips, leading to a substantial antiferromagnetic component in the magnetic polarization. At large compressions, the global magnetovolume effect leads to a reduction of all magnetic moments. The distribution of positive and negative moments overlaps, resulting in a transition to a spin-glass state. Our calculations demonstrate a universal proportionality of the local magnetic moment and the local exchange splitting.}",
	publisher = "{AMER PHYSICAL SOC}",
	address = "{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{VIENNA TECH UNIV, INST THEORET PHYS, HAUPTSTR 8-10, A-1040 VIENNA, AUSTRIA. CZECHOSLOVAK ACAD SCI, INST PHYS MET, CS-61662 BRNO, CZECHOSLOVAKIA.}",
	doi = "{10.1103/PhysRevB.46.247}",
	issn = "{1098-0121}",
	eissn = "{1550-235X}",
	keywords-plus = "{ELECTRONIC-STRUCTURE; FCC IRON; HCP-FE; ALLOYS; TRANSITION; FILMS; BCC; CO}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. Andersen O. K., 1986, ELECT BAND STRUCTURE, DOI 10.1007/3540180982\_1. BLAHA P, 1988, PHYS REV B, V38, P9368, DOI 10.1103/PhysRevB.38.9368. BOSE SK, 1988, PHYS REV B, V37, P9955, DOI 10.1103/PhysRevB.37.9955. BROSTOW W, 1977, CHEM PHYS LETT, V49, P285, DOI 10.1016/0009-2614(77)80588-5. BROSTOW W, 1978, J COMPUT PHYS, V29, P81, DOI 10.1016/0021-9991(78)90110-9. COEY JMD, 1981, J PHYS F MET PHYS, V11, P2707, DOI 10.1088/0305-4608/11/12/018. EGAMI T, 1980, PHILOS MAG A, V41, P883. FINNEY JL, 1970, PROC R SOC LON SER-A, V319, P479, DOI 10.1098/rspa.1970.0189. FUJIWARA T, 1984, J NON-CRYST SOLIDS, V61-2, P1039, DOI 10.1016/0022-3093(84)90679-3. HAFNER J, 1983, STRUCTURE NONCRYSTAL, V2, P539. HAUSLEITNER C, 1990, PHYS REV B, V42, P5863, DOI 10.1103/PhysRevB.42.5863. HAUSLEITNER C, 1991, J PHYS-CONDENS MAT, V3, P1589, DOI 10.1088/0953-8984/3/11/017. HAUSLEITNER C, 1992, PHYS REV B, V45, P115, DOI 10.1103/PhysRevB.45.115. HIMPSEL FJ, 1991, PHYS REV LETT, V67, P2363, DOI 10.1103/PhysRevLett.67.2363. HUANG K, 1950, PROC R SOC LON SER-A, V203, P178, DOI 10.1098/rspa.1950.0133. ICHIKAWA T, 1973, PHYS STATUS SOLIDI A, V19, P707, DOI 10.1002/pssa.2210190237. JANAK JF, 1978, SOLID STATE COMMUN, V25, P53, DOI 10.1016/0038-1098(78)90354-X. JANI AR, 1989, PHYS REV B, V40, P1593, DOI 10.1103/PhysRevB.40.1593. JARLBORG T, 1984, J MAGN MAGN MATER, V42, P89, DOI 10.1016/0304-8853(84)90293-2. JASWAL SS, 1988, PHYS REV B, V38, P7311, DOI 10.1103/PhysRevB.38.7311. JHANK W, 1911, EPL-EUROPHYS LETT, V16, P473. KAKEHASHI Y, 1991, PHYS REV B, V43, P10820, DOI 10.1103/PhysRevB.43.10820. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. KRAUSS U, 1991, J MAGN MAGN MATER, V98, pL1, DOI 10.1016/0304-8853(91)90416-8. KUBLER J, 1981, PHYS LETT A, V81, P81, DOI 10.1016/0375-9601(81)90311-X. KUBLER J, 1989, SOLID STATE COMMUN, V72, P631, DOI 10.1016/0038-1098(89)90662-5. LIN C, 1988, PHYS REV LETT, V60, P2422. MA H, 1991, J PHYS-CONDENS MAT, V3, P5563, DOI 10.1088/0953-8984/3/29/010. MATHUR P, 1983, Z PHYS B CON MAT, V53, P255, DOI 10.1007/BF01436287. MAURER M, 1989, EUROPHYS LETT, V9, P803, DOI 10.1209/0295-5075/9/8/011. Mizoguchi T., 1976, AIP C P, V34, P286. MORUZZI VL, 1989, PHYS REV B, V39, P6957, DOI 10.1103/PhysRevB.39.6957. MORUZZI VL, 1978, CALCULATED ELECTRONI. MRYASOV ON, 1991, J PHYS-CONDENS MAT, V3, P7683, DOI 10.1088/0953-8984/3/39/013. PAPPAS DP, 1990, PHYS REV LETT, V64, P3179, DOI 10.1103/PhysRevLett.64.3179. PRINZ GA, 1985, PHYS REV LETT, V54, P1051, DOI 10.1103/PhysRevLett.54.1051. RYAN DH, 1987, PHYS REV B, V35, P8630, DOI 10.1103/PhysRevB.35.8630. SAITO N, 1986, J PHYS F MET PHYS, V16, P911, DOI 10.1088/0305-4608/16/7/018. Skriver H., 1984, LMTO METHOD. TUREK I, UNPUB. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. WANG CS, 1985, PHYS REV LETT, V54, P1852, DOI 10.1103/PhysRevLett.54.1852. XU YN, 1991, J APPL PHYS, V69, P5460, DOI 10.1063/1.348009.}",
	number-of-cited-references = "{44}",
	times-cited = "{51}}, Usage-Count-(Last-180-days) = {{3}",
	usage-count-since-2013 = "{5}",
	journal-iso = "{Phys. Rev. B}",
	doc-delivery-number = "{JC556}",
	unique-id = "{ISI:A1992JC55600031}"
}

I TUREK, J HAFNER and C HAUSLEITNER. ELECTRONIC AND MAGNETIC-STRUCTURE OF AMORPHOUS FE-ZR, CO-ZR, NI-ZR ALLOYS FROM BAND THEORY. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 109(2-3):L145-L150, Březen 1992. BibTeX

@article{ ISI:A1992HP06000002,
	author = "TUREK, I and HAFNER, J and HAUSLEITNER, C",
	title = "{ELECTRONIC AND MAGNETIC-STRUCTURE OF AMORPHOUS FE-ZR, CO-ZR, NI-ZR ALLOYS FROM BAND THEORY}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{1992}",
	volume = "{109}",
	number = "{2-3}",
	pages = "{L145-L150}",
	month = "{MAR}",
	abstract = "{We show that quantitative predictions of magnetic moments in amorphous transition metal alloys are possible by parameter-free, self-consistent electronic structure calculations for realistic structural models. Detailed results for alloys of Fe. Co and Ni with Zr are presented. The physical mechanism for moment formation and for the origin of complex spin-structures in Fe-rich alloys is discussed.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Letter}",
	language = "{English}",
	affiliation = "{TUREK, I (Reprint Author), VIENNA TECH UNIV,INST THEORET PHYS,WIEDNER HAUPTSTR 8-10,A-1040 VIENNA,AUSTRIA.}",
	doi = "{10.1016/0304-8853(92)91740-K}",
	issn = "{0304-8853}",
	keywords-plus = "{METALLIC GLASSES}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{ALTOUNIAN Z, 1983, PHYS REV B, V27, P4149, DOI 10.1103/PhysRevB.27.4149. Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. BECKER C, 1991, THESIS TU WIEN. HAUSLEITNER C, 1990, PHYS REV B, V42, P5863, DOI 10.1103/PhysRevB.42.5863. HAUSLEITNER C, 1990, J PHYS-CONDENS MAT, V2, P6651, DOI 10.1088/0953-8984/2/31/018. HAUSLEITNER C, IN PRESS PHYS REV B, V44. HAUSLEITNER C, UNPUB J NONCRYST SOL. HIROYOSHI H, 1981, PHYS LETT A, V85, P242, DOI 10.1016/0375-9601(81)90027-X. HOSOMA T, 1981, RAPIDLY QUENCHED MET, V4, P1125. JANK W, 1991, EUROPHYS LETT, V16, P473, DOI 10.1209/0295-5075/16/5/011. JASWAL SS, 1988, PHYS REV B, V38, P7311, DOI 10.1103/PhysRevB.38.7311. KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133. KREBS HU, 1984, J NON-CRYST SOLIDS, V61-2, P463, DOI 10.1016/0022-3093(84)90592-1. KREBS HU, 1985, THESIS U GOTTINGEN. KROMPIEWSKI S, 1989, PHYS REV B, V39, P2819, DOI 10.1103/PhysRevB.39.2819. KUBLER J, 1988, J APPL PHYS, V63, P3482. MALOZEMOFF AP, 1983, J MAGN MAGN MATER, V35, P192, DOI 10.1016/0304-8853(83)90492-4. MOHN P, 1985, PHYSICA B \& C, V130, P26, DOI 10.1016/0378-4363(85)90173-1. Oelhafen P., 1987, Amorphous and Liquid Materials. Proceedings of the NATO Advanced Study Institute. OSHIMA R, 1981, RAPIDLY QUENCHED MET, V4, P1117. RYAN DH, 1991, J APPL PHYS, V69, P5057, DOI 10.1063/1.348948. RYAN DH, 1987, PHYS REV B, V35, P8630, DOI 10.1103/PhysRevB.35.8630. Skriver H., 1984, LMTO METHOD. STOBIECKI T, 1987, P S MAGNETIC PROPERT. SUZUKI K, 1990, J NON-CRYST SOLIDS, V117, P1, DOI 10.1016/0022-3093(90)90869-N. TUREK I, 1990, HYPERFINE INTERACT, V62, P343. VONBARTH U, 1972, J PHYS PART C SOLID, V5, P1629, DOI 10.1088/0022-3719/5/13/012. WIESINGER G, 1981, J MAGN MAGN MATER, V22, P227, DOI 10.1016/0304-8853(81)90027-5. WILLIAMS AR, 1981, J APPL PHYS, V52, P2067, DOI 10.1063/1.329617.}",
	number-of-cited-references = "{29}",
	times-cited = "{14}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{3}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{HP060}",
	unique-id = "{ISI:A1992HP06000002}"
}

J SVOBODA and I TUREK. ON DIFFUSION-CONTROLLED EVOLUTION OF CLOSED SOLID-STATE THERMODYNAMIC SYSTEMS AT CONSTANT TEMPERATURE AND PRESSURE. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES 64(6):749-759, Prosinec 1991. BibTeX

@article{ ISI:A1991GU16100008,
	author = "SVOBODA, J and TUREK, I",
	title = "{ON DIFFUSION-CONTROLLED EVOLUTION OF CLOSED SOLID-STATE THERMODYNAMIC SYSTEMS AT CONSTANT TEMPERATURE AND PRESSURE}",
	journal = "{PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES}",
	year = "{1991}",
	volume = "{64}",
	number = "{6}",
	pages = "{749-759}",
	month = "{DEC}",
	abstract = "{On the basis of analogy between a closed mechanical dissipative system and a closed solid-state thermodynamic system out of equilibrium at constant temperature and pressure, a principle describing the time evolution of the thermodynamic system has been formulated. The principle makes it possible to derive the time development of the macroscopic parameters of the thermodynamic system. A simple application of the principle to the diffusion in the solid-state system leads to the well known Fick's laws, whereas its application to more complicated systems brings original results which cannot be obtained by means of recent approaches.}",
	publisher = "{TAYLOR \& FRANCIS LTD}",
	address = "{ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{SVOBODA, J (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS MET,ZIZKOVA 22,CS-61662 BRNO,CZECHOSLOVAKIA.}",
	doi = "{10.1080/13642819108207635}",
	issn = "{0141-8637}",
	research-areas = "{Materials Science; Mechanics; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Mechanics; Physics, Applied; Physics, Condensed Matter}",
	researcherid-numbers = "{Svoboda, Jiri/F-9810-2014 Turek, Ilja/G-5553-2014}",
	cited-references = "{BAZAROV IP, 1989, NONEQULIBRIUM THERMO. Callen H. B., 1960, THERMODYNAMICS. Christian J.W., 1965, THEORY TRANSFORMATIO. Groot SR, 1962, NONEQUILIBRIUM THERM. LEECH JW, 1958, CLASSICAL MECHANICS. Porter D.A., 1981, PHASE TRANSFORMATION. Prigogine I, 1967, INTRO THERMODYNAMICS. SVOBODA J, 1990, ACTA METALL MATER, V38, P573, DOI 10.1016/0956-7151(90)90211-X. SVOBODA J, 1990, UNPUB ACTA METALL ME.}",
	number-of-cited-references = "{9}",
	times-cited = "{49}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{4}",
	journal-iso = "{Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop.}",
	doc-delivery-number = "{GU161}",
	unique-id = "{ISI:A1991GU16100008}"
}

I TUREK and V VESELY. ADVANCED MODELING OF DISTRIBUTION SHAPES IN THE FFT MATRIX PROCESSING OF MOSSBAUER-SPECTRA. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS 62(1):175-178, Listopad 1991. BibTeX

@article{ ISI:A1991GU71900026,
	author = "TUREK, I and VESELY, V",
	title = "{ADVANCED MODELING OF DISTRIBUTION SHAPES IN THE FFT MATRIX PROCESSING OF MOSSBAUER-SPECTRA}",
	journal = "{NUCLEAR INSTRUMENTS \& METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS}",
	year = "{1991}",
	volume = "{62}",
	number = "{1}",
	pages = "{175-178}",
	month = "{NOV}",
	abstract = "{Analytical shapes are presented allowing us to model general asymmetric and multivariate distributions according to several hyperfine parameters. such as magnetic splitting. quadrupole splitting or isomer shifts, simultaneously. Their implementation in the system CONFIT {[}Hyperfine Interactions 58 (1990) 2679] is described and some experience obtained with practical Mossbauer spectra is discussed.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{TUREK, I (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS MET,ZIZKOVA 22,CS-61662 BRNO,CZECHOSLOVAKIA.}",
	doi = "{10.1016/0168-583X(91)95946-B}",
	issn = "{0168-583X}",
	research-areas = "{Instruments \& Instrumentation; Nuclear Science \& Technology; Physics}",
	web-of-science-categories = "{Instruments \& Instrumentation; Nuclear Science \& Technology; Physics, Atomic, Molecular \& Chemical; Physics, Nuclear}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{LINES ME, 1983, SOLID STATE COMMUN, V45, P435, DOI 10.1016/0038-1098(83)90316-2. TUREK I, 1990, KEY ENG MAT, V40-1, P215. TUREK I, 1990, HYPERFINE INTERACT, V55, P1089, DOI 10.1007/BF02397128. TUREK I, 1989, THESIS I PHYSICAL ME. VESELY V, 1990, HYPERFINE INTERACT, V58, P2679, DOI 10.1007/BF02398397. VESELY V, 1986, NUCL INSTRUM METH B, V18, P88, DOI 10.1016/S0168-583X(86)80017-9.}",
	number-of-cited-references = "{6}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms}",
	doc-delivery-number = "{GU719}",
	unique-id = "{ISI:A1991GU71900026}"
}

I TUREK. ELECTRONIC-STRUCTURE AND HYPERFINE PARAMETERS DISTRIBUTION IN AMORPHOUS FE80B20 CLUSTER. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 98(1-2):119-129, Červenec 1991. BibTeX

@article{ ISI:A1991GA32400021,
	author = "TUREK, I",
	title = "{ELECTRONIC-STRUCTURE AND HYPERFINE PARAMETERS DISTRIBUTION IN AMORPHOUS FE80B20 CLUSTER}",
	journal = "{JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS}",
	year = "{1991}",
	volume = "{98}",
	number = "{1-2}",
	pages = "{119-129}",
	month = "{JUL}",
	abstract = "{The electronic structure of a computer-built amorphous Fe80B20 cluster was calculated from first principles by means of the spin-polarized tight-binding linear-muffin-tin orbital (TB-LMTO) method and the recursion technique. The hyperfine parameters (hyperfine magnetic fields and isomer shifts) at iron nuclei were calculated. Their average values and variances were compared to experimental results from Fe-57 Mossbauer spectroscopy and satisfactory agreement was achieved. A connection between the hyperfine parameters at individual iron nuclei and the type of the local atomic environment was studied. It turns out that the hyperfine magnetic fields (isomer shifts) are negatively (positively) correlated with the number of boron atoms in the first coordination shell. This correlation is used to explain the experimentally observed asymmetry of hyperfine field distributions.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{TUREK, I (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS MET,ZIZKOVA 22,CS-61662 BRNO,CZECHOSLOVAKIA.}",
	doi = "{10.1016/0304-8853(91)90436-E}",
	issn = "{0304-8853}",
	keywords-plus = "{ITINERANT MAGNETIC-PROPERTIES; FE-B ALLOYS; METALLIC GLASSES; MOSSBAUER; SYSTEMS; IMPURITIES; MOMENT; MODELS; FIELDS; IRON}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{AKAI H, 1984, J MAGN MAGN MATER, V45, P291, DOI 10.1016/0304-8853(84)90021-0. AKAI H, 1986, PHYS REV LETT, V56, P2407, DOI 10.1103/PhysRevLett.56.2407. Andersen O. K., 1984, Electronic Structure of Complex Systems. Proceedings of a NATO Advanced Study Institute, P11. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. Andersen O. K., 1986, ELECT BAND STRUCTURE, DOI 10.1007/3540180982\_1. Beer N., 1984, Electronic Structure of Complex Systems. Proceedings of a NATO Advanced Study Institute, P769. BLUGEL S, 1987, PHYS REV B, V35, P3271, DOI 10.1103/PhysRevB.35.3271. BOSE SK, 1988, PHYS REV B, V37, P9955, DOI 10.1103/PhysRevB.37.9955. BOUDREAUX DS, 1978, PHYS REV B, V18, P4039, DOI 10.1103/PhysRevB.18.4039. CHIEN CL, 1979, PHYS REV B, V20, P283, DOI 10.1103/PhysRevB.20.283. CHIEN CL, 1982, PHYS REV B, V25, P5790, DOI 10.1103/PhysRevB.25.5790. COWLAM N, 1985, J PHYS F MET PHYS, V15, P1109, DOI 10.1088/0305-4608/15/5/016. CRAMER H, 1946, MATH METHODS STATIST. DUBIEL SM, 1984, J MAGN MAGN MATER, V45, P298, DOI 10.1016/0304-8853(84)90022-2. DUBOIS JM, 1982, NUCL INSTRUM METHODS, V199, P307, DOI 10.1016/0167-5087(82)90221-6. EIBSCHUTZ M, 1984, J PHYS F MET PHYS, V14, P505, DOI 10.1088/0305-4608/14/2/021. ELLIS DE, 1985, PHYS REV B, V31, P1514, DOI 10.1103/PhysRevB.31.1514. FUJIWARA T, 1982, J PHYS F MET PHYS, V12, P661, DOI 10.1088/0305-4608/12/4/009. FUJIWARA T, 1981, J PHYS F MET PHYS, V11, P1327, DOI 10.1088/0305-4608/11/6/016. FUJIWARA T, 1984, J NON-CRYST SOLIDS, V61-2, P1039, DOI 10.1016/0022-3093(84)90679-3. FUJIWARA T, 1982, Z NATURFORSCH A, V37, P611. Gaskell P., 1983, GLASSY METALS, VII, P5. GONSER U, 1986, MICROSCOPIC METHODS. GUNNARSSON O, 1983, PHYS REV B, V27, P7144, DOI 10.1103/PhysRevB.27.7144. HANDRICH K, 1980, AMORPHE FERROMAGNETI. Harrison W. A., 1980, ELECTRONIC STRUCTURE. HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215. Herman F., 1963, ATOMIC STRUCTURE CAL. KIZLER P, 1988, Z NATURFORSCH A, V43, P1047. KRAJCI M, 1984, J PHYS F MET PHYS, V14, P1325, DOI 10.1088/0305-4608/14/6/004. KRAJCI M, 1988, J PHYS F MET PHYS, V18, P2137, DOI 10.1088/0305-4608/18/10/005. KREY U, 1987, PHYS STATUS SOLIDI B, V144, P203, DOI 10.1002/pssb.2221440118. KROMPIEWSKI S, 1987, J MAGN MAGN MATER, V69, P117, DOI 10.1016/0304-8853(87)90107-7. KROMPIEWSKI S, 1988, J MAGN MAGN MATER, V73, P5, DOI 10.1016/0304-8853(88)90160-6. Messmer R. P., 1983, Amorphous metallic alloys, P114. MORUZZI VL, 1978, CALCULATED ELECTRONI. NOLD E, 1981, Z NATURFORSCH A, V36, P1032. NOWAK HJ, IN PRESS. SJORSTROM J, 1987, THESIS U UPPSALA. SOB M, 1988, Z PHYS CHEM NEUE FOL, V157, P515. TUREK I, 1989, THESIS I PHYSICAL ME. VINCZE I, 1986, PHYS REV B, V33, P5050, DOI 10.1103/PhysRevB.33.5050. VINCZE I, 1980, J PHYS, V41, P257, DOI 10.1051/jphyscol:1980187. WALTER JL, 1978, MATER SCI ENG, V36, P193, DOI 10.1016/0025-5416(78)90072-1. XIANYU Z, 1985, J PHYS F MET PHYS, V15, P1799.}",
	number-of-cited-references = "{46}",
	times-cited = "{7}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{4}",
	journal-iso = "{J. Magn. Magn. Mater.}",
	doc-delivery-number = "{GA324}",
	unique-id = "{ISI:A1991GA32400021}"
}

I TUREK. A 1ST-PRINCIPLES CALCULATION OF THE MAGNETIC-MOMENTS AND HYPERFINE PARAMETERS IN AMORPHOUS FE-B ALLOYS. JOURNAL OF PHYSICS-CONDENSED MATTER 2(51):10559-10572, 1990. BibTeX

@article{ ISI:A1990ET11400026,
	author = "TUREK, I",
	title = "{A 1ST-PRINCIPLES CALCULATION OF THE MAGNETIC-MOMENTS AND HYPERFINE PARAMETERS IN AMORPHOUS FE-B ALLOYS}",
	journal = "{JOURNAL OF PHYSICS-CONDENSED MATTER}",
	year = "{1990}",
	volume = "{2}",
	number = "{51}",
	pages = "{10559-10572}",
	month = "{DEC 31}",
	abstract = "{The electronic structure of ferromagnetic amorphous alloys Fe(1-x)B(x) (0.14 less-than-or-equal-to x less-than-or-equal-to 0.23) is calculated from first principles using the tight-binding linear muffin-tin orbital method in the atomic spheres approximation for realistic structural models. The concentration dependences of magnetization and average hyperfine parameters at iron nuclei (hyperfine magnetic fields and isomer shifts) are discussed with respect to the main mechanisms of their origin and to the structural characteristics of the atomic models used. The concentration behaviour of the magnetization is explained by means of the charge transfer from boron to iron which amounts to 0.75 electrons per boron atom and which is accompanied by a change in the shape of the density-of-states curves. It is shown that the composition dependence of the isomer shift is controlled by the interatomic charge transfer together with the intra-atomic s-d electron conversion. The behaviour of the hyperfine field can be explained by a core polarization proportional to the local magnetic moment of iron atom and by a valence contribution due to the s-d hybridization. The calculated values agree fairly well with existing experimental data.}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{CZECHOSLOVAK ACAD SCI, INST PHYS MET, ZIZKOVA 22, CS-61662 BRNO, CZECHOSLOVAKIA.}",
	doi = "{10.1088/0953-8984/2/51/026}",
	issn = "{0953-8984}",
	eissn = "{1361-648X}",
	keywords-plus = "{MOSSBAUER ISOMER-SHIFT; ELECTRONIC-STRUCTURE; METALLIC GLASSES; CHARGE-TRANSFER; MODEL; CRYSTALLINE; SYSTEMS; SIMULATIONS; IMPURITIES; FIELDS}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{AKAI H, 1984, J MAGN MAGN MATER, V45, P291, DOI 10.1016/0304-8853(84)90021-0. AKAI H, 1986, PHYS REV LETT, V56, P2407, DOI 10.1103/PhysRevLett.56.2407. ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. Andersen O. K., 1986, ELECT BAND STRUCTURE, DOI 10.1007/3540180982\_1. Beer N., 1984, Electronic Structure of Complex Systems. Proceedings of a NATO Advanced Study Institute, P769. BLUGEL S, 1987, PHYS REV B, V35, P3271, DOI 10.1103/PhysRevB.35.3271. CHIEN CL, 1979, PHYS REV B, V20, P283, DOI 10.1103/PhysRevB.20.283. CHIEN CL, 1982, PHYS REV B, V25, P5790, DOI 10.1103/PhysRevB.25.5790. COWLAM N, 1985, J PHYS F MET PHYS, V15, P1109, DOI 10.1088/0305-4608/15/5/016. DUBIEL SM, 1984, PHYS REV B, V29, P2279, DOI 10.1103/PhysRevB.29.2279. DUBOIS JM, 1982, NUCL INSTRUM METHODS, V199, P307, DOI 10.1016/0167-5087(82)90221-6. EIBSCHUTZ M, 1984, J PHYS F MET PHYS, V14, P505, DOI 10.1088/0305-4608/14/2/021. ELLIS DE, 1985, PHYS REV B, V31, P1514, DOI 10.1103/PhysRevB.31.1514. ELZAIN ME, 1990, IN PRESS P INT C APP. FUJIWARA T, 1982, J PHYS F MET PHYS, V12, P661, DOI 10.1088/0305-4608/12/4/009. FUJIWARA T, 1981, J PHYS F MET PHYS, V11, P1327, DOI 10.1088/0305-4608/11/6/016. FUJIWARA T, 1984, J NON-CRYST SOLIDS, V61-2, P1039, DOI 10.1016/0022-3093(84)90679-3. GONSER U, 1986, MICROSCOPIC METHODS, P409. Handrich K., 1980, AMORPHE FERRO FERRIM. Harrison W. A., 1980, ELECTRONIC STRUCTURE. HASEGAWA R, 1978, J APPL PHYS, V49, P4174, DOI 10.1063/1.325328. HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215. Herman F., 1963, ATOMIC STRUCTURE CAL. HIROYOSHI H, 1978, PHYS LETT A, V65, P163, DOI 10.1016/0375-9601(78)90606-0. HOVING W, 1985, PHYS REV B, V32, P8368, DOI 10.1103/PhysRevB.32.8368. INGALLS R, 1967, PHYS REV, V155, P157, DOI 10.1103/PhysRev.155.157. JASWAL SS, 1985, J NON-CRYST SOLIDS, V75, P373, DOI 10.1016/0022-3093(85)90244-3. KASPAR J, 1983, J PHYS F MET PHYS, V13, P311, DOI 10.1088/0305-4608/13/2/008. KRAJCI M, 1984, J PHYS F MET PHYS, V14, P1325, DOI 10.1088/0305-4608/14/6/004. KRAJCI M, 1988, J PHYS F MET PHYS, V18, P2137, DOI 10.1088/0305-4608/18/10/005. KREY U, 1987, PHYS STATUS SOLIDI B, V144, P203, DOI 10.1002/pssb.2221440118. KROMPIEWSKI S, 1987, J MAGN MAGN MATER, V69, P117, DOI 10.1016/0304-8853(87)90107-7. LUBORSKY FE, 1980, J PHYS F MET PHYS, V10, P959, DOI 10.1088/0305-4608/10/5/024. LUSCHER E, 1987, AMOURPHOUS LIQUID MA. MAKSYMOWICZ AZ, 1984, PHYS STATUS SOLIDI B, V126, P191, DOI 10.1002/pssb.2221260122. Messmer R. P., 1983, Amorphous metallic alloys, P114. MIEDEMA AR, 1980, PHYSICA B \& C, V100, P145, DOI 10.1016/0378-4363(80)90001-7. Moruzzi V.L., 1978, CALCULATED ELECTRONI, P168. NAGEL SR, 1975, PHYS REV LETT, V35, P380, DOI 10.1103/PhysRevLett.35.380. NAGEL SR, 1982, ADV CHEM PHYS, V51, P227, DOI 10.1002/9780470142752.ch5. NAKAJIMA T, 1986, J MATER SCI LETT, V5, P60, DOI 10.1007/BF01671437. NOLD E, 1981, Z NATURFORSCH A, V36, P1032. NOWAK HJ, 1990, UNPUB. O'Handley R. C., 1983, Amorphous metallic alloys, P257. PINDOR AJ, 1983, J PHYS F MET PHYS, V13, P979, DOI 10.1088/0305-4608/13/5/012. SJORSTROM J, 1987, THESIS UPPSALA U. SOB M, 1988, Z PHYS CHEM NEUE FOL, V157, P515. SOB M, 1986, J PHYS F MET PHYS, V16, P577, DOI 10.1088/0305-4608/16/5/007. TAKACS L, 1979, PHYS STATUS SOLIDI A, V56, P371, DOI 10.1002/pssa.2210560142. TANIWAKI M, 1988, MATER SCI ENG, V99, P47, DOI 10.1016/0025-5416(88)90289-3. Tegze M., 1985, Rapidly Quenched Metals. Proceedings of the Fifth International Conference, P1031. TUREK I, 1986, 16TH P S EL STRUCT, P27. VANDERWOUDE F, 1981, SOLID STATE COMMUN, V39, P1097, DOI 10.1016/0038-1098(81)90217-9. Waseda Y., 1978, Physica Status Solidi A, V49, P387, DOI 10.1002/pssa.2210490149. WENDT HR, 1978, PHYS REV LETT, V41, P1244, DOI 10.1103/PhysRevLett.41.1244. ZE XY, 1985, J PHYS F MET PHYS, V15, P1799, DOI 10.1088/0305-4608/15/8/018.}",
	number-of-cited-references = "{57}",
	times-cited = "{9}}, Usage-Count-(Last-180-days) = {{1}",
	usage-count-since-2013 = "{4}",
	journal-iso = "{J. Phys.-Condes. Matter}",
	doc-delivery-number = "{ET114}",
	unique-id = "{ISI:A1990ET11400026}"
}

I TUREK. FE-57 MOSSBAUER PROFILES OF MAGNETIC SOLIDS WITH RANDOM ELECTRIC-FIELD GRADIENTS. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS 52(2):187-193, Prosinec 1990. BibTeX

@article{ ISI:A1990EQ09400011,
	author = "TUREK, I",
	title = "{FE-57 MOSSBAUER PROFILES OF MAGNETIC SOLIDS WITH RANDOM ELECTRIC-FIELD GRADIENTS}",
	journal = "{NUCLEAR INSTRUMENTS \& METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS}",
	year = "{1990}",
	volume = "{52}",
	number = "{2}",
	pages = "{187-193}",
	month = "{DEC}",
	abstract = "{A superoperator formalism is used to calculate Mossbauer profiles in the presence of a hyperfine magnetic field and a random electric field gradient tensor. The distribution of the tensor components is described by Czjzek's model which includes not only the isotropic random orientation of the principal axes of the tensor but also a distribution of its principal component and asymmetry parameter. The magnetic hyperfine fields are of a single magnitude with a simple magnetic texture. The calculation of the profiles is based on (a) exact formulae for spectral densities of diagonal elements of an averaged auxiliary resolvent of a 4 x 4 Hamiltonian and (b) numerical convolution using an FFT algorithm. The results are illustrated with several figures and their possible connections to Mossbauer spectra of amorphous materials are discussed.}",
	publisher = "{ELSEVIER SCIENCE BV}",
	address = "{PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{TUREK, I (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS MET,ZIZKOVA 22,CS-61662 BRNO,CZECHOSLOVAKIA.}",
	doi = "{10.1016/0168-583X(90)90587-K}",
	issn = "{0168-583X}",
	keywords-plus = "{ALLOYS}",
	research-areas = "{Instruments \& Instrumentation; Nuclear Science \& Technology; Physics}",
	web-of-science-categories = "{Instruments \& Instrumentation; Nuclear Science \& Technology; Physics, Atomic, Molecular \& Chemical; Physics, Nuclear}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{BHATNAGAR AK, 1985, HYPERFINE INTERACT, V24, P637. BLAES N, 1985, NUCL INSTRUM METH B, V9, P201, DOI 10.1016/0168-583X(85)90683-4. BLUME M, 1968, PHYS REV, V174, P351, DOI 10.1103/PhysRev.174.351. BLUME M, 1968, PHYS REV, V165, P446, DOI 10.1103/PhysRev.165.446. BRAND RA, 1987, NUCL INSTRUM METH B, V28, P398, DOI 10.1016/0168-583X(87)90182-0. CZJZEK G, 1981, PHYS REV B, V23, P2513, DOI 10.1103/PhysRevB.23.2513. EIBSCHUTZ M, 1982, PHYS REV B, V25, P4256, DOI 10.1103/PhysRevB.25.4256. Gonser U., 1975, MOSSBAUER SPECTROSCO, P97. HAGGSTROM L, 1974, UUIP851 U UPPS REP. HASSELBACH KM, 1980, NUCL INSTRUM METHODS, V176, P537, DOI 10.1016/0029-554X(80)90382-1. KUNDIG W, 1967, NUCL INSTRUM METHODS, V48, P219, DOI 10.1016/0029-554X(67)90320-5. LECAER G, 1984, NUCL INSTRUM METH B, V5, P25, DOI 10.1016/0168-583X(84)90565-2. Mehta M. L., 1967, RANDOM MATRICES. SHARON TE, 1972, PHYS REV B, V5, P1047, DOI 10.1103/PhysRevB.5.1047. VESELY V, 1986, NUCL INSTRUM METH B, V18, P88, DOI 10.1016/S0168-583X(86)80017-9.}",
	number-of-cited-references = "{15}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms}",
	doc-delivery-number = "{EQ094}",
	unique-id = "{ISI:A1990EQ09400011}"
}

I TUREK and T ZEMCIK. RELAXATION EFFECTS IN THE MOSSBAUER HYPERFINE-STRUCTURE OF AMORPHOUS FE70CO10B20 AT 125-DEGREES-C. HYPERFINE INTERACTIONS 55(1-4):1089-1092, Červenec 1990. INTERNATIONAL CONF ON THE APPLICATIONS OF THE MOSSBAUER EFFECT, BUDAPEST, HUNGARY, SEP 04-08, 1989. BibTeX

@article{ ISI:A1990DW17600035,
	author = "TUREK, I and ZEMCIK, T",
	title = "{RELAXATION EFFECTS IN THE MOSSBAUER HYPERFINE-STRUCTURE OF AMORPHOUS FE70CO10B20 AT 125-DEGREES-C}",
	journal = "{HYPERFINE INTERACTIONS}",
	year = "{1990}",
	volume = "{55}",
	number = "{1-4}",
	pages = "{1089-1092}",
	month = "{JUL}",
	note = "{INTERNATIONAL CONF ON THE APPLICATIONS OF THE MOSSBAUER EFFECT, BUDAPEST, HUNGARY, SEP 04-08, 1989}",
	organization = "{INT UNION PURE \& APPL CHEM; INT UNION PURE \& APPL PHYS; EUROPEAN PHYS SOC; INT CTR THEORET PHYS; ROLAND EOTVOS PHYS SOC}",
	publisher = "{BALTZER SCI PUBL BV}",
	address = "{ASTERWEG 1A, 1031 HL AMSTERDAM, NETHERLANDS}",
	type = "{Article; Proceedings Paper}",
	language = "{English}",
	affiliation = "{TUREK, I (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS MET,ZIZKOVA 22,CS-61662 BRNO,CZECHOSLOVAKIA.}",
	doi = "{10.1007/BF02397128}",
	issn = "{0304-3843}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Atomic, Molecular \& Chemical; Physics, Condensed Matter; Physics, Nuclear}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{ABDELMEGUID MM, 1982, PHYS REV B, V25, P1, DOI 10.1103/PhysRevB.25.1. EIBSCHUTZ M, 1982, PHYS REV B, V25, P4256, DOI 10.1103/PhysRevB.25.4256. FONER S, 1967, J APPL PHYS, V38, P1510, DOI 10.1063/1.1709685. GIBBS MRJ, 1986, J PHYS F MET PHYS, V16, P809, DOI 10.1088/0305-4608/16/7/008. LINES ME, 1983, SOLID STATE COMMUN, V45, P435, DOI 10.1016/0038-1098(83)90316-2. VESELY V, 1986, NUCL INSTRUM METH B, V18, P88, DOI 10.1016/S0168-583X(86)80017-9. VESELY V, 1990, HYPER INTER, V55. ZEMCIK T, 1989, P C NUCLEAR METHODS, V49, P1039.}",
	number-of-cited-references = "{8}",
	times-cited = "{3}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Hyperfine Interact.}",
	doc-delivery-number = "{DW176}",
	unique-id = "{ISI:A1990DW17600035}"
}

J SVOBODA, I TUREK and V SKLENICKA. UNIFIED THERMODYNAMIC TREATMENT OF CAVITY NUCLEATION AND GROWTH IN HIGH-TEMPERATURE CREEP. ACTA METALLURGICA ET MATERIALIA 38(4):573-580, Duben 1990. BibTeX

@article{ ISI:A1990CY15100004,
	author = "SVOBODA, J and TUREK, I and SKLENICKA, V",
	title = "{UNIFIED THERMODYNAMIC TREATMENT OF CAVITY NUCLEATION AND GROWTH IN HIGH-TEMPERATURE CREEP}",
	journal = "{ACTA METALLURGICA ET MATERIALIA}",
	year = "{1990}",
	volume = "{38}",
	number = "{4}",
	pages = "{573-580}",
	month = "{APR}",
	publisher = "{PERGAMON-ELSEVIER SCIENCE LTD}",
	address = "{THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{SVOBODA, J (Reprint Author), CZECHOSLOVAK ACAD SCI, INST PHYS MET, ZIZKOVA 22, CS-61662 BRNO, CZECHOSLOVAKIA.}",
	doi = "{10.1016/0956-7151(90)90211-X}",
	issn = "{0956-7151}",
	research-areas = "{Materials Science; Metallurgy \& Metallurgical Engineering}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Metallurgy \& Metallurgical Engineering}",
	researcherid-numbers = "{Svoboda, Jiri/F-9810-2014 Turek, Ilja/G-5553-2014}",
	cited-references = "{ARGON AS, 1980, CREEP FATIGUE ENV IN, P46. Beere W., 1981, CAVITIES CRACKS CREE, P1. CADEK J, 1988, CREEP METALLIC MATER. COCKS ACF, 1982, PROG MATER SCI, V27, P189, DOI 10.1016/0079-6425(82)90001-9. EVANS HE, 1984, MECHANISMS CREEP FRA. Groot SR, 1962, NONEQUILIBRIUM THERM. HULL D, 1959, PHILOS MAG, V4, P673, DOI 10.1080/14786435908243264. LEECH JW, 1958, CLASSICAL MECHANICS. Nix W.D., 1985, FLOW FRACTURE ELEVAT, P1. Prigogine I, 1967, INTRO THERMODYNAMICS. RAJ R, 1975, ACTA METALL MATER, V23, P653, DOI 10.1016/0001-6160(75)90047-4. RAJ R, 1978, ACTA METALL MATER, V26, P995, DOI 10.1016/0001-6160(78)90050-0. Riedel H., 1987, FRACTURE HIGH TEMPER. Sneddon I, 1969, CRACK PROBLEMS CLASS. YOO MH, 1983, METALL TRANS A, V14, P547, DOI 10.1007/BF02643772. Zeldovich JB, 1943, ACTA PHYSICOCHIM URS, V18, P1.}",
	number-of-cited-references = "{16}",
	times-cited = "{18}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{2}",
	journal-iso = "{Acta Metall. Mater.}",
	doc-delivery-number = "{CY151}",
	unique-id = "{ISI:A1990CY15100004}"
}

I TUREK and T ZEMCIK. HYPERFINE-STRUCTURE CHANGES IN AMORPHOUS FE70CO10B20 DURING RELAXATION AT 125-DEGREES-C. In P DUHAJ, P MRAFKO and P SVEC (eds.). AMORPHOUS METALLIC MATERIALS 40-1. 1990, 215-220. 2ND INTERNATIONAL CONF ON AMORPHOUS METALLIC MATERIALS, SMOLENICE, CZECHOSLOVAKIA, MAY 22-26, 1989. BibTeX

@inproceedings{ ISI:A1990BQ73B00027,
	author = "TUREK, I and ZEMCIK, T",
	editor = "{DUHAJ, P and MRAFKO, P and SVEC, P}",
	title = "{HYPERFINE-STRUCTURE CHANGES IN AMORPHOUS FE70CO10B20 DURING RELAXATION AT 125-DEGREES-C}",
	booktitle = "{AMORPHOUS METALLIC MATERIALS}",
	series = "{KEY ENGINEERING MATERIALS}",
	year = "{1990}",
	volume = "{40-1}",
	pages = "{215-220}",
	note = "{2ND INTERNATIONAL CONF ON AMORPHOUS METALLIC MATERIALS, SMOLENICE, CZECHOSLOVAKIA, MAY 22-26, 1989}",
	organization = "{ACAD SCI CZECHOSLOVAKIA, ELECTRO PHYS RES CTR, INST PHYS; UNION SLOVAK MATHEMATICIANS \& PHYSICISTS}",
	publisher = "{TRANS TECH PUBLICATIONS LTD}",
	address = "{ZURICH}",
	type = "{Proceedings Paper}",
	language = "{English}",
	isbn = "{0-87849-601-7}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	number-of-cited-references = "{0}",
	times-cited = "{1}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{BQ73B}",
	unique-id = "{ISI:A1990BQ73B00027}"
}

I TUREK. THE INFLUENCE OF STRUCTURE CHANGES ON CHARGE AND SPIN-DENSITIES IN AMORPHOUS FE80B20 CLUSTERS. In P DUHAJ, P MRAFKO and P SVEC (eds.). AMORPHOUS METALLIC MATERIALS 40-1. 1990, 293-298. 2ND INTERNATIONAL CONF ON AMORPHOUS METALLIC MATERIALS, SMOLENICE, CZECHOSLOVAKIA, MAY 22-26, 1989. BibTeX

@inproceedings{ ISI:A1990BQ73B00038,
	author = "TUREK, I",
	editor = "{DUHAJ, P and MRAFKO, P and SVEC, P}",
	title = "{THE INFLUENCE OF STRUCTURE CHANGES ON CHARGE AND SPIN-DENSITIES IN AMORPHOUS FE80B20 CLUSTERS}",
	booktitle = "{AMORPHOUS METALLIC MATERIALS}",
	series = "{KEY ENGINEERING MATERIALS}",
	year = "{1990}",
	volume = "{40-1}",
	pages = "{293-298}",
	note = "{2ND INTERNATIONAL CONF ON AMORPHOUS METALLIC MATERIALS, SMOLENICE, CZECHOSLOVAKIA, MAY 22-26, 1989}",
	organization = "{ACAD SCI CZECHOSLOVAKIA, ELECTRO PHYS RES CTR, INST PHYS; UNION SLOVAK MATHEMATICIANS \& PHYSICISTS}",
	publisher = "{TRANS TECH PUBLICATIONS LTD}",
	address = "{ZURICH}",
	type = "{Proceedings Paper}",
	language = "{English}",
	isbn = "{0-87849-601-7}",
	research-areas = "{Materials Science; Physics}",
	web-of-science-categories = "{Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	number-of-cited-references = "{0}",
	times-cited = "{0}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{BQ73B}",
	unique-id = "{ISI:A1990BQ73B00038}"
}

I TUREK. MIXED HYPERFINE INTERACTIONS IN AMORPHOUS MATERIALS - A MODEL STUDY. HYPERFINE INTERACTIONS 62(4):343-351, 1990. BibTeX

@article{ ISI:A1990FY91100007,
	author = "TUREK, I",
	title = "{MIXED HYPERFINE INTERACTIONS IN AMORPHOUS MATERIALS - A MODEL STUDY}",
	journal = "{HYPERFINE INTERACTIONS}",
	year = "{1990}",
	volume = "{62}",
	number = "{4}",
	pages = "{343-351}",
	abstract = "{Fe-57 Mossbauer absorption profiles were calculated supposing distributions of all hyperfine parameters: hyperfine magnetic fields, isomer shifts, and electric field gradients. The effect of mixed hyperfine interactions was taken into account in all orders of perturbation theory. The shapes of the spectra were systematically studied for varying average values and widths of the hyperfine magnetic field distribution (HMFD). From the simulated spectra, the shapes of the HMFD were reconstructed using standard techniques of Mossbauer spectra processing which neglect the effects of random isomer shifts and electric field gradients. It has been shown that the reconstructed shapes of the HMFD differ qualitatively from the original single-peaked distributions and exhibit a double-peaked structure similar to the distributions found in many experiments on amorphous alloys with low iron content. A brief review of various mechanisms responsible for either apparent or real double-peaked structure of HMFD has been given.}",
	publisher = "{BALTZER SCI PUBL BV}",
	address = "{ASTERWEG 1A, 1031 HL AMSTERDAM, NETHERLANDS}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{TUREK, I (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS MET,ZIZKOVA 22,CS-61662 BRNO,CZECHOSLOVAKIA.}",
	issn = "{0304-3843}",
	keywords-plus = "{OVERLAPPED MOSSBAUER-SPECTRA; FIELD DISTRIBUTIONS; ALLOYS; FE-57}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Atomic, Molecular \& Chemical; Physics, Condensed Matter; Physics, Nuclear}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{BLAES N, 1985, NUCL INSTRUM METH B, V9, P201, DOI 10.1016/0168-583X(85)90683-4. BRAND RA, 1987, NUCL INSTRUM METH B, V28, P398, DOI 10.1016/0168-583X(87)90182-0. CHAPPERT J, 1981, J PHYS F MET PHYS, V11, P2727, DOI 10.1088/0305-4608/11/12/019. CHIEN CL, 1979, J APPL PHYS, V50, P7647, DOI 10.1063/1.326824. CHIEN CL, 1979, PHYS REV B, V19, P81, DOI 10.1103/PhysRevB.19.81. CHIEN CL, 1979, J APPL PHYS, V50, P1574, DOI 10.1063/1.327260. CZJZEK G, 1981, PHYS REV B, V23, P2513, DOI 10.1103/PhysRevB.23.2513. EIBSCHUTZ M, 1984, J PHYS F MET PHYS, V14, P505, DOI 10.1088/0305-4608/14/2/021. GONSER U, 1986, MICROSCOPIC METHODS, P409. Gonser U., 1975, MOSSBAUER SPECTROSCO, P97. HAGGSTROM L, 1974, UUIP851 U UPPS REP. HESSE J, 1974, J PHYS E SCI INSTRUM, V7, P526, DOI 10.1088/0022-3735/7/7/012. JACCARINO V, 1965, PHYS REV LETT, V15, P259. KELLER H, 1981, J APPL PHYS, V52, P5268, DOI 10.1063/1.329432. LECAER G, 1988, HYPERFINE INTERACT, V42, P943. LECAER G, 1979, J PHYS E SCI INSTRUM, V12, P1083, DOI 10.1088/0022-3735/12/11/018. LECAER G, 1984, NUCL INSTRUM METH B, V5, P25, DOI 10.1016/0168-583X(84)90565-2. LECAER G, 1985, J PHYS C SOLID STATE, V46, pC8. MIGLIERINI M, IN PRESS J MATER SCI. MOORJANI K, 1984, MAGNETIC GLASSES, P112. RANCOURT DG, 1988, HYPERFINE INTERACT, V40, P183, DOI 10.1007/BF02049089. TUREK I, 1990, NUCL INSTRUM METH B, V52, P187, DOI 10.1016/0168-583X(90)90587-K. WINDOW B, 1971, J PHYS E SCI INSTRUM, V4, P401, DOI 10.1088/0022-3735/4/5/022.}",
	number-of-cited-references = "{23}",
	times-cited = "{5}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	journal-iso = "{Hyperfine Interact.}",
	doc-delivery-number = "{FY911}",
	unique-id = "{ISI:A1990FY91100007}"
}

I TUREK. A MAXIMUM-ENTROPY APPROACH TO THE DENSITY OF STATES WITHIN THE RECURSION METHOD. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS 21(17):3251-3260, 1988. BibTeX

@article{ ISI:A1988N886000014,
	author = "TUREK, I",
	title = "{A MAXIMUM-ENTROPY APPROACH TO THE DENSITY OF STATES WITHIN THE RECURSION METHOD}",
	journal = "{JOURNAL OF PHYSICS C-SOLID STATE PHYSICS}",
	year = "{1988}",
	volume = "{21}",
	number = "{17}",
	pages = "{3251-3260}",
	month = "{JUN 20}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{TECHNO HOUSE, REDCLIFFE WAY, BRISTOL, ENGLAND BS1 6NX}",
	type = "{Article}",
	language = "{English}",
	affiliation = "{TUREK, I (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS MET,ZIZKOVA 22,CS-61662 BRNO,CZECHOSLOVAKIA.}",
	doi = "{10.1088/0022-3719/21/17/014}",
	issn = "{0022-3719}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Condensed Matter}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014}",
	cited-references = "{ALLAN G, 1984, J PHYS C SOLID STATE, V17, P3945, DOI 10.1088/0022-3719/17/22/013. ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED, P159. Beer N., 1984, Electronic Structure of Complex Systems. Proceedings of a NATO Advanced Study Institute, P769. BROWN RH, 1985, PHYS REV B, V32, P6125, DOI 10.1103/PhysRevB.32.6125. CARLSSON AE, 1986, PHYS REV B, V34, P3567, DOI 10.1103/PhysRevB.34.3567. FEDDERS PA, 1985, PHYS REV B, V32, P229, DOI 10.1103/PhysRevB.32.229. GUIASU S, 1985, MATH INTELL, V7, P42. HAYDOCK R, 1972, J PHYS PART C SOLID, V5, P2845, DOI 10.1088/0022-3719/5/20/004. HAYDOCK R, 1973, SURF SCI, V38, P139, DOI 10.1016/0039-6028(73)90279-3. HAYDOCK R, 1984, J PHYS C SOLID STATE, V17, P4783, DOI 10.1088/0022-3719/17/27/008. HAYDOCK R, 1985, J PHYS C SOLID STATE, V18, P2235, DOI 10.1088/0022-3719/18/11/007. HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215. Lifshitz I., 1982, INTRO THEORY DISORDE. LUCHINI MU, 1987, J PHYS C SOLID STATE, V20, P3125, DOI 10.1088/0022-3719/20/21/011. Magnus A., 1985, Recursion Method and Its Applications. Proceedings of a Conference. MEAD LR, 1984, J MATH PHYS, V25, P2404, DOI 10.1063/1.526446. NEX CMM, 1978, J PHYS A-MATH GEN, V11, P653, DOI 10.1088/0305-4470/11/4/006. Szego G., 1959, ORTHOGONAL POLYNOMIA. TURCHI P, 1982, J PHYS C SOLID STATE, V15, P2891, DOI 10.1088/0022-3719/15/13/017.}",
	number-of-cited-references = "{19}",
	times-cited = "{28}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{N8860}",
	unique-id = "{ISI:A1988N886000014}"
}

J KUDRNOVSKY, V DRCHAL and I TUREK. ELECTRONIC-PROPERTIES OF FCC-BASED AND BCC-BASED RANDOM AGCD ALLOYS. JOURNAL OF PHYSICS F-METAL PHYSICS 17(11):L283-L287, Listopad 1987. BibTeX

@article{ ISI:A1987K751300003,
	author = "KUDRNOVSKY, J and DRCHAL, V and TUREK, I",
	title = "{ELECTRONIC-PROPERTIES OF FCC-BASED AND BCC-BASED RANDOM AGCD ALLOYS}",
	journal = "{JOURNAL OF PHYSICS F-METAL PHYSICS}",
	year = "{1987}",
	volume = "{17}",
	number = "{11}",
	pages = "{L283-L287}",
	month = "{NOV}",
	publisher = "{IOP PUBLISHING LTD}",
	address = "{TECHNO HOUSE, REDCLIFFE WAY, BRISTOL, ENGLAND BS1 6NX}",
	type = "{Letter}",
	language = "{English}",
	affiliation = "{KUDRNOVSKY, J (Reprint Author), CZECHOSLOVAK ACAD SCI,INST PHYS,NA SLOVANCE 2,CS-18040 PRAHA,CZECHOSLOVAKIA. CZECHOSLOVAK ACAD SCI,INST PHYS MET,CS-61662 BRNO,CZECHOSLOVAKIA.}",
	doi = "{10.1088/0305-4608/17/11/003}",
	issn = "{0305-4608}",
	research-areas = "{Physics}",
	web-of-science-categories = "{Physics, Applied; Physics, Multidisciplinary}",
	researcherid-numbers = "{Turek, Ilja/G-5553-2014 Drchal, Vaclav/G-6259-2014}",
	orcid-numbers = "{Drchal, Vaclav/0000-0002-6628-7417}",
	cited-references = "{ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571, DOI 10.1103/PhysRevLett.53.2571. Andersen O. K., 1985, HIGHLIGHTS CONDENSED, P59. BARRETT C, 1980, STRUCTURE METALS, P370. GREEN EL, 1970, PHYS REV B, V2, P330, DOI 10.1103/PhysRevB.2.330. KUDRNOVSKY J, 1987, PHYS REV B, V35, P2487, DOI 10.1103/PhysRevB.35.2487. LASSER R, 1981, PHYS REV B, V24, P1910, DOI 10.1103/PhysRevB.24.1910. MASEK J, 1986, SOLID STATE COMMUN, V58, P67, DOI 10.1016/0038-1098(86)90889-6. MORUZZI VL, 1978, CALCULATED ELECTRONI. RAO RS, 1984, PHYS REV B, V29, P1713, DOI 10.1103/PhysRevB.29.1713. RILEY JD, 1976, J PHYS F MET PHYS, V6, P293, DOI 10.1088/0305-4608/6/2/023. SMITH NV, 1974, PHYS REV B, V9, P1341, DOI 10.1103/PhysRevB.9.1341. VANDERMAREL D, 1985, PHYS REV B, V32, P6631. WINTER H, 1983, PHYS REV B, V27, P882, DOI 10.1103/PhysRevB.27.882.}",
	number-of-cited-references = "{13}",
	times-cited = "{2}}, Usage-Count-(Last-180-days) = {{0}",
	usage-count-since-2013 = "{0}",
	doc-delivery-number = "{K7513}",
	unique-id = "{ISI:A1987K751300003}"
}

Najdete nás na Facebooku



 

pro studenty moje

banner facility 2